{"title":"半胱氨酸在脑老化和神经变性中的翻译后修饰。","authors":"Milos R Filipovic","doi":"10.1016/j.neurot.2025.e00726","DOIUrl":null,"url":null,"abstract":"<p><p>Cysteine residues occupy a unique position in the proteome: their thiolate side chain combines high nucleophilicity with redox sensitivity, making them prime targets for a diverse and ever-expanding array of post-translational modifications (PTMs). This review provides an overview of recent methodological developments for chemoselective site-specific detection and quantitation of the major cysteine PTMs-sulfenylation (RSOH), sulfinylation (RSO<sub>2</sub>H), sulfonylation (RSO<sub>3</sub>H), persulfidation (RSSH), S-nitrosylation (RSNO), and S-palmitoylation-emphasizing applications in brain aging and neurodegeneration. In neural tissues, these approaches have begun to map age-dependent increases in sulfenylation and sulfonylation, declines in persulfidation, and aberrant S-nitrosylation and palmitoylation linked to Alzheimer's, Parkinson's, and Huntington's disease. However, significant challenges remain. Further improvements in sensitivity, specificity, and quantitative accuracy are essential to capture low-abundance and labile modifications in complex neural tissues. These attempts should be coupled to more detailed anatomical dissection of these modifications in different parts of the brain, enabling region- and cell-type-specific insights. Advancing analytical workflows, integrating multi-dimensional data, and linking chemical modifications to biological outcomes will pave the way for innovative therapeutic strategies targeting cysteine chemistry in neurological disease.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00726"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Profiling the landscape of cysteine posttranslational modifications in brain aging and neurodegeneration.\",\"authors\":\"Milos R Filipovic\",\"doi\":\"10.1016/j.neurot.2025.e00726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cysteine residues occupy a unique position in the proteome: their thiolate side chain combines high nucleophilicity with redox sensitivity, making them prime targets for a diverse and ever-expanding array of post-translational modifications (PTMs). This review provides an overview of recent methodological developments for chemoselective site-specific detection and quantitation of the major cysteine PTMs-sulfenylation (RSOH), sulfinylation (RSO<sub>2</sub>H), sulfonylation (RSO<sub>3</sub>H), persulfidation (RSSH), S-nitrosylation (RSNO), and S-palmitoylation-emphasizing applications in brain aging and neurodegeneration. In neural tissues, these approaches have begun to map age-dependent increases in sulfenylation and sulfonylation, declines in persulfidation, and aberrant S-nitrosylation and palmitoylation linked to Alzheimer's, Parkinson's, and Huntington's disease. However, significant challenges remain. Further improvements in sensitivity, specificity, and quantitative accuracy are essential to capture low-abundance and labile modifications in complex neural tissues. These attempts should be coupled to more detailed anatomical dissection of these modifications in different parts of the brain, enabling region- and cell-type-specific insights. Advancing analytical workflows, integrating multi-dimensional data, and linking chemical modifications to biological outcomes will pave the way for innovative therapeutic strategies targeting cysteine chemistry in neurological disease.</p>\",\"PeriodicalId\":19159,\"journal\":{\"name\":\"Neurotherapeutics\",\"volume\":\" \",\"pages\":\"e00726\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotherapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neurot.2025.e00726\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neurot.2025.e00726","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Profiling the landscape of cysteine posttranslational modifications in brain aging and neurodegeneration.
Cysteine residues occupy a unique position in the proteome: their thiolate side chain combines high nucleophilicity with redox sensitivity, making them prime targets for a diverse and ever-expanding array of post-translational modifications (PTMs). This review provides an overview of recent methodological developments for chemoselective site-specific detection and quantitation of the major cysteine PTMs-sulfenylation (RSOH), sulfinylation (RSO2H), sulfonylation (RSO3H), persulfidation (RSSH), S-nitrosylation (RSNO), and S-palmitoylation-emphasizing applications in brain aging and neurodegeneration. In neural tissues, these approaches have begun to map age-dependent increases in sulfenylation and sulfonylation, declines in persulfidation, and aberrant S-nitrosylation and palmitoylation linked to Alzheimer's, Parkinson's, and Huntington's disease. However, significant challenges remain. Further improvements in sensitivity, specificity, and quantitative accuracy are essential to capture low-abundance and labile modifications in complex neural tissues. These attempts should be coupled to more detailed anatomical dissection of these modifications in different parts of the brain, enabling region- and cell-type-specific insights. Advancing analytical workflows, integrating multi-dimensional data, and linking chemical modifications to biological outcomes will pave the way for innovative therapeutic strategies targeting cysteine chemistry in neurological disease.
期刊介绍:
Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities.
The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field.
Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.