Bin Zheng, Min Li, Zixuan Gao, Yajie Yang, Kaikai Guo, Huijie Gao, Yungang Zhao, Weng-Onn Lui, Hong Xie
{"title":"miR-150-5p通过m6A修饰稳定CTNNB1的FTO调控默克尔细胞癌进展。","authors":"Bin Zheng, Min Li, Zixuan Gao, Yajie Yang, Kaikai Guo, Huijie Gao, Yungang Zhao, Weng-Onn Lui, Hong Xie","doi":"10.1002/mc.70036","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are small regulatory molecules playing important roles in different physiological and pathological processes, but only several miRNAs were functionally characterized in Merkel cell carcinoma (MCC). We previously identified miR-150-5p as one of the differentially expressed miRNAs between MCC metastases and primary tumors. In the present study, we further investigated the functional role of miR-150-5p in MCC progression. Our results revealed that miR-150-5p suppresses the migratory and invasive properties of MCC cells. We identified RNA N6-methyladenosine (m<sup>6</sup>A) demethylase FTO as a direct target of miR-150-5p. Functionally, we showed that FTO enhances proliferative, migratory and invasive properties of MCC cells, and rescued the antitumor effects induced by miR-150-5p. Mechanistically, we demonstrated that FTO stabilizes CTNNB1 transcripts via its m<sup>6</sup>A demethylation activity. Silencing the m<sup>6</sup>A reader YTHDF2 increased, while its overexpression decreased CTNNB1 mRNA and protein levels. Furthermore, the RNA immunoprecipitation assays demonstrated the interaction between CTNNB1 mRNA and YTHDF2. Together, these results suggest that FTO stabilizes CTNNB1 in an m<sup>6</sup>A-dependent manner. In conclusion, our findings uncover the role of miR-150-5p and its target FTO in MCC progression, suggesting the potential of targeting FTO signaling for MCC therapy.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-150-5p Regulates Merkel Cell Carcinoma Progression by Targeting FTO That Stabilizes CTNNB1 via m<sup>6</sup>A Modification.\",\"authors\":\"Bin Zheng, Min Li, Zixuan Gao, Yajie Yang, Kaikai Guo, Huijie Gao, Yungang Zhao, Weng-Onn Lui, Hong Xie\",\"doi\":\"10.1002/mc.70036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) are small regulatory molecules playing important roles in different physiological and pathological processes, but only several miRNAs were functionally characterized in Merkel cell carcinoma (MCC). We previously identified miR-150-5p as one of the differentially expressed miRNAs between MCC metastases and primary tumors. In the present study, we further investigated the functional role of miR-150-5p in MCC progression. Our results revealed that miR-150-5p suppresses the migratory and invasive properties of MCC cells. We identified RNA N6-methyladenosine (m<sup>6</sup>A) demethylase FTO as a direct target of miR-150-5p. Functionally, we showed that FTO enhances proliferative, migratory and invasive properties of MCC cells, and rescued the antitumor effects induced by miR-150-5p. Mechanistically, we demonstrated that FTO stabilizes CTNNB1 transcripts via its m<sup>6</sup>A demethylation activity. Silencing the m<sup>6</sup>A reader YTHDF2 increased, while its overexpression decreased CTNNB1 mRNA and protein levels. Furthermore, the RNA immunoprecipitation assays demonstrated the interaction between CTNNB1 mRNA and YTHDF2. Together, these results suggest that FTO stabilizes CTNNB1 in an m<sup>6</sup>A-dependent manner. In conclusion, our findings uncover the role of miR-150-5p and its target FTO in MCC progression, suggesting the potential of targeting FTO signaling for MCC therapy.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.70036\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.70036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
miR-150-5p Regulates Merkel Cell Carcinoma Progression by Targeting FTO That Stabilizes CTNNB1 via m6A Modification.
MicroRNAs (miRNAs) are small regulatory molecules playing important roles in different physiological and pathological processes, but only several miRNAs were functionally characterized in Merkel cell carcinoma (MCC). We previously identified miR-150-5p as one of the differentially expressed miRNAs between MCC metastases and primary tumors. In the present study, we further investigated the functional role of miR-150-5p in MCC progression. Our results revealed that miR-150-5p suppresses the migratory and invasive properties of MCC cells. We identified RNA N6-methyladenosine (m6A) demethylase FTO as a direct target of miR-150-5p. Functionally, we showed that FTO enhances proliferative, migratory and invasive properties of MCC cells, and rescued the antitumor effects induced by miR-150-5p. Mechanistically, we demonstrated that FTO stabilizes CTNNB1 transcripts via its m6A demethylation activity. Silencing the m6A reader YTHDF2 increased, while its overexpression decreased CTNNB1 mRNA and protein levels. Furthermore, the RNA immunoprecipitation assays demonstrated the interaction between CTNNB1 mRNA and YTHDF2. Together, these results suggest that FTO stabilizes CTNNB1 in an m6A-dependent manner. In conclusion, our findings uncover the role of miR-150-5p and its target FTO in MCC progression, suggesting the potential of targeting FTO signaling for MCC therapy.
期刊介绍:
Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.