Esteban Bertsch-Aguilar, Antonio Piedra, Daniel Acuña, Sebastián Suñer, Sylvana Pinheiro, William J Zamora
{"title":"LiProS:可查找,可访问,可互操作和可重用的数据模拟工作流,以预测小分子的准确亲脂性概况。","authors":"Esteban Bertsch-Aguilar, Antonio Piedra, Daniel Acuña, Sebastián Suñer, Sylvana Pinheiro, William J Zamora","doi":"10.1002/minf.70007","DOIUrl":null,"url":null,"abstract":"<p><p>Lipophilicity is a fundamental physicochemical property widely used to evaluate key parameters in drug design, materials science, and food engineering. It plays a critical role in predicting membrane permeability, absorption, and distribution of compounds. Moreover, lipophilicity is commonly integrated into scoring functions to model biomolecular interactions and serves as an important molecular descriptor in machine learning models for property prediction and compound classification. The election of the appropriate pH-dependent lipophilicity ( <math> <semantics><mrow><mi>log</mi> <msub><mi>D</mi> <mrow><mtext>pH</mtext></mrow> </msub> </mrow> <annotation>$$ \\mathrm{log} {D}_{pH} $$</annotation></semantics> </math> ) model is important to ensure its accuracy. The incorporation of the ion apparent partition coefficient ( <math> <semantics> <mrow><msubsup><mi>P</mi> <mi>I</mi> <mtext>app</mtext></msubsup> </mrow> <annotation>$$ {P}_{\\text{I}}^{\\text{app}}$$</annotation></semantics> </math> ) into predictions of pH-dependent lipophilicity profiles can be essential for accurately reproducing experimental results. In accordance with the principles for findable, accessible, interoperable, and reusable data to improve data management and sharing, here, we introduce LiProS, a FAIR workflow that is easily accessible through a Google Colab notebook. LiProS assists researchers in efficiently determining the appropriate pH-dependent lipophilicity profile based on the SMILES code of their molecules of interest. In addition, LiProS demonstrated its utility in the analysis of ionizable compounds within the NAPRORE-CR natural products database, enabling the identification of the most appropriate lipophilicity formalism tailored to the physicochemical characteristics of these compounds.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 8","pages":"e202500136"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LiProS: Findable, Accessible, Interoperable, and Reusable Data Simulation Workflow to Predict Accurate Lipophilicity Profiles for Small Molecules.\",\"authors\":\"Esteban Bertsch-Aguilar, Antonio Piedra, Daniel Acuña, Sebastián Suñer, Sylvana Pinheiro, William J Zamora\",\"doi\":\"10.1002/minf.70007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipophilicity is a fundamental physicochemical property widely used to evaluate key parameters in drug design, materials science, and food engineering. It plays a critical role in predicting membrane permeability, absorption, and distribution of compounds. Moreover, lipophilicity is commonly integrated into scoring functions to model biomolecular interactions and serves as an important molecular descriptor in machine learning models for property prediction and compound classification. The election of the appropriate pH-dependent lipophilicity ( <math> <semantics><mrow><mi>log</mi> <msub><mi>D</mi> <mrow><mtext>pH</mtext></mrow> </msub> </mrow> <annotation>$$ \\\\mathrm{log} {D}_{pH} $$</annotation></semantics> </math> ) model is important to ensure its accuracy. The incorporation of the ion apparent partition coefficient ( <math> <semantics> <mrow><msubsup><mi>P</mi> <mi>I</mi> <mtext>app</mtext></msubsup> </mrow> <annotation>$$ {P}_{\\\\text{I}}^{\\\\text{app}}$$</annotation></semantics> </math> ) into predictions of pH-dependent lipophilicity profiles can be essential for accurately reproducing experimental results. In accordance with the principles for findable, accessible, interoperable, and reusable data to improve data management and sharing, here, we introduce LiProS, a FAIR workflow that is easily accessible through a Google Colab notebook. LiProS assists researchers in efficiently determining the appropriate pH-dependent lipophilicity profile based on the SMILES code of their molecules of interest. In addition, LiProS demonstrated its utility in the analysis of ionizable compounds within the NAPRORE-CR natural products database, enabling the identification of the most appropriate lipophilicity formalism tailored to the physicochemical characteristics of these compounds.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\"44 8\",\"pages\":\"e202500136\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.70007\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.70007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
亲脂性是一种基本的物理化学性质,广泛用于评价药物设计、材料科学和食品工程中的关键参数。它在预测膜的透性、吸收和化合物的分布方面起着关键作用。此外,亲脂性通常被集成到评分函数中来模拟生物分子相互作用,并作为机器学习模型中用于属性预测和化合物分类的重要分子描述符。选择合适的pH依赖性亲脂性(log D pH $$ \mathrm{log} {D}_{pH} $$)模型对于确保其准确性非常重要。将离子表观分配系数(P I app $$ {P}_{\text{I}}^{\text{app}}$$)结合到ph依赖性亲脂性谱的预测中,对于准确再现实验结果至关重要。根据可查找、可访问、可互操作和可重用数据的原则,以改善数据管理和共享,在这里,我们介绍了LiProS,一个通过谷歌Colab笔记本轻松访问的FAIR工作流。LiProS帮助研究人员根据感兴趣分子的SMILES编码有效地确定适当的ph依赖性亲脂性。此外,LiProS在分析NAPRORE-CR天然产物数据库中的可电离化合物方面也证明了它的实用性,能够根据这些化合物的物理化学特性确定最合适的亲脂性形式。
LiProS: Findable, Accessible, Interoperable, and Reusable Data Simulation Workflow to Predict Accurate Lipophilicity Profiles for Small Molecules.
Lipophilicity is a fundamental physicochemical property widely used to evaluate key parameters in drug design, materials science, and food engineering. It plays a critical role in predicting membrane permeability, absorption, and distribution of compounds. Moreover, lipophilicity is commonly integrated into scoring functions to model biomolecular interactions and serves as an important molecular descriptor in machine learning models for property prediction and compound classification. The election of the appropriate pH-dependent lipophilicity ( ) model is important to ensure its accuracy. The incorporation of the ion apparent partition coefficient ( ) into predictions of pH-dependent lipophilicity profiles can be essential for accurately reproducing experimental results. In accordance with the principles for findable, accessible, interoperable, and reusable data to improve data management and sharing, here, we introduce LiProS, a FAIR workflow that is easily accessible through a Google Colab notebook. LiProS assists researchers in efficiently determining the appropriate pH-dependent lipophilicity profile based on the SMILES code of their molecules of interest. In addition, LiProS demonstrated its utility in the analysis of ionizable compounds within the NAPRORE-CR natural products database, enabling the identification of the most appropriate lipophilicity formalism tailored to the physicochemical characteristics of these compounds.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.