ATO基因家族控制白色念珠菌在胃肠道中的定植。

IF 4.7 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-10-08 Epub Date: 2025-09-03 DOI:10.1128/mbio.01644-25
Rosana Alves, Faezeh Ghasemi, Wouter Van Genechten, Stefanie Wijnants, Odessa Van Goethem, Cláudia Barata-Antunes, Vitor Fernandes, Patrícia Ataíde, Alexandra Gomes-Gonçalves, Rudy Vergauwen, Qinxi Ma, Ricardo Duarte, Isabel Soares-Silva, Margarida Casal, Alistair J P Brown, Patrick Van Dijck, Sandra Paiva
{"title":"ATO基因家族控制白色念珠菌在胃肠道中的定植。","authors":"Rosana Alves, Faezeh Ghasemi, Wouter Van Genechten, Stefanie Wijnants, Odessa Van Goethem, Cláudia Barata-Antunes, Vitor Fernandes, Patrícia Ataíde, Alexandra Gomes-Gonçalves, Rudy Vergauwen, Qinxi Ma, Ricardo Duarte, Isabel Soares-Silva, Margarida Casal, Alistair J P Brown, Patrick Van Dijck, Sandra Paiva","doi":"10.1128/mbio.01644-25","DOIUrl":null,"url":null,"abstract":"<p><p>The fungal pathogen <i>Candida albicans</i> colonizes the human gut, where short-chain fatty acids (SCFAs) serve as a source of carbon. This fungus harbors one of the largest microbial families of <i>ATO</i> (acetate transporter ortholog) genes, which encode putative SCFA transport proteins. Here, we generate <i>C. albicans</i> null mutants lacking individual or all known putative SCFA transporter genes and compare their phenotypes <i>in vitro</i> and <i>in vivo</i>. We show that blocking <i>ATO</i> function in <i>C. albicans</i> impairs SCFA uptake and growth, particularly on acetate. The uptake of acetate is largely dependent on a functional Ato1 (also known as Frp3/Ato3), and it is effectively abolished upon deletion of all <i>ATO</i> genes. We further demonstrate that deletion of the entire <i>ATO</i> gene family, but not inactivation of <i>ATO1</i> alone, compromises the stable colonization of <i>C. albicans</i> in the murine gastrointestinal tract following bacterial disruption by broad-spectrum antibiotics. Our data suggest that the <i>ATO</i> gene family has expanded and diversified during the evolution of <i>C. albicans</i> to promote the fitness of this fungal commensal during gut colonization, in part through SCFA utilization.IMPORTANCEThe human gut is rich in microbial fermentation products such as short-chain fatty acids (SCFAs), which serve as key nutrients for both bacteria and fungi. <i>C. albicans</i>, a common fungal resident of the gut and a cause of opportunistic infections, carries an unusually large family of <i>ATO</i> (acetate transporter ortholog) genes. This study reveals that this <i>ATO</i> gene family is required for the efficient uptake of acetate, the most abundant SCFA in the gut, and for stable colonization of the gut. These findings uncover a new layer of metabolic adaptation in fungal commensals of humans and suggest that transporter gene expansion can shape microbial fitness in response to environmental nutrient signals.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0164425"},"PeriodicalIF":4.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12506252/pdf/","citationCount":"0","resultStr":"{\"title\":\"The <i>ATO</i> gene family governs <i>Candida albicans</i> colonization in the dysbiotic gastrointestinal tract.\",\"authors\":\"Rosana Alves, Faezeh Ghasemi, Wouter Van Genechten, Stefanie Wijnants, Odessa Van Goethem, Cláudia Barata-Antunes, Vitor Fernandes, Patrícia Ataíde, Alexandra Gomes-Gonçalves, Rudy Vergauwen, Qinxi Ma, Ricardo Duarte, Isabel Soares-Silva, Margarida Casal, Alistair J P Brown, Patrick Van Dijck, Sandra Paiva\",\"doi\":\"10.1128/mbio.01644-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fungal pathogen <i>Candida albicans</i> colonizes the human gut, where short-chain fatty acids (SCFAs) serve as a source of carbon. This fungus harbors one of the largest microbial families of <i>ATO</i> (acetate transporter ortholog) genes, which encode putative SCFA transport proteins. Here, we generate <i>C. albicans</i> null mutants lacking individual or all known putative SCFA transporter genes and compare their phenotypes <i>in vitro</i> and <i>in vivo</i>. We show that blocking <i>ATO</i> function in <i>C. albicans</i> impairs SCFA uptake and growth, particularly on acetate. The uptake of acetate is largely dependent on a functional Ato1 (also known as Frp3/Ato3), and it is effectively abolished upon deletion of all <i>ATO</i> genes. We further demonstrate that deletion of the entire <i>ATO</i> gene family, but not inactivation of <i>ATO1</i> alone, compromises the stable colonization of <i>C. albicans</i> in the murine gastrointestinal tract following bacterial disruption by broad-spectrum antibiotics. Our data suggest that the <i>ATO</i> gene family has expanded and diversified during the evolution of <i>C. albicans</i> to promote the fitness of this fungal commensal during gut colonization, in part through SCFA utilization.IMPORTANCEThe human gut is rich in microbial fermentation products such as short-chain fatty acids (SCFAs), which serve as key nutrients for both bacteria and fungi. <i>C. albicans</i>, a common fungal resident of the gut and a cause of opportunistic infections, carries an unusually large family of <i>ATO</i> (acetate transporter ortholog) genes. This study reveals that this <i>ATO</i> gene family is required for the efficient uptake of acetate, the most abundant SCFA in the gut, and for stable colonization of the gut. These findings uncover a new layer of metabolic adaptation in fungal commensals of humans and suggest that transporter gene expansion can shape microbial fitness in response to environmental nutrient signals.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":\" \",\"pages\":\"e0164425\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12506252/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.01644-25\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.01644-25","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

真菌病原体白色念珠菌在人体肠道中定植,其中短链脂肪酸(SCFAs)作为碳的来源。这种真菌拥有ATO(醋酸酯转运蛋白同源)基因的最大微生物家族之一,该基因编码假定的SCFA转运蛋白。在这里,我们产生了缺乏单个或所有已知的假定SCFA转运基因的白色念珠菌零突变体,并比较了它们在体外和体内的表型。我们发现阻断白色念珠菌的ATO功能会损害SCFA的摄取和生长,特别是对醋酸的摄取。醋酸盐的摄取在很大程度上依赖于功能性的at1(也称为Frp3/ at3),并且在所有ATO基因缺失时有效地消除。我们进一步证明,在广谱抗生素破坏细菌后,整个ATO基因家族的缺失,而不是单独的ATO基因1的失活,会损害白色念珠菌在小鼠胃肠道中的稳定定植。我们的数据表明,ATO基因家族在白色念珠菌的进化过程中扩大和多样化,以促进这种真菌共生体在肠道定植过程中的适应性,部分是通过SCFA的利用。人体肠道富含微生物发酵产物,如短链脂肪酸(SCFAs),它是细菌和真菌的关键营养物质。白色念珠菌是一种常见的肠道真菌,也是机会性感染的原因,它携带一个异常大的ATO(醋酸酯转运体同源)基因家族。这项研究表明,ATO基因家族是肠道中最丰富的SCFA醋酸酯的有效吸收和肠道稳定定植所必需的。这些发现揭示了人类真菌共生体代谢适应的新层面,并表明转运体基因扩增可以影响微生物对环境营养信号的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The ATO gene family governs Candida albicans colonization in the dysbiotic gastrointestinal tract.

The fungal pathogen Candida albicans colonizes the human gut, where short-chain fatty acids (SCFAs) serve as a source of carbon. This fungus harbors one of the largest microbial families of ATO (acetate transporter ortholog) genes, which encode putative SCFA transport proteins. Here, we generate C. albicans null mutants lacking individual or all known putative SCFA transporter genes and compare their phenotypes in vitro and in vivo. We show that blocking ATO function in C. albicans impairs SCFA uptake and growth, particularly on acetate. The uptake of acetate is largely dependent on a functional Ato1 (also known as Frp3/Ato3), and it is effectively abolished upon deletion of all ATO genes. We further demonstrate that deletion of the entire ATO gene family, but not inactivation of ATO1 alone, compromises the stable colonization of C. albicans in the murine gastrointestinal tract following bacterial disruption by broad-spectrum antibiotics. Our data suggest that the ATO gene family has expanded and diversified during the evolution of C. albicans to promote the fitness of this fungal commensal during gut colonization, in part through SCFA utilization.IMPORTANCEThe human gut is rich in microbial fermentation products such as short-chain fatty acids (SCFAs), which serve as key nutrients for both bacteria and fungi. C. albicans, a common fungal resident of the gut and a cause of opportunistic infections, carries an unusually large family of ATO (acetate transporter ortholog) genes. This study reveals that this ATO gene family is required for the efficient uptake of acetate, the most abundant SCFA in the gut, and for stable colonization of the gut. These findings uncover a new layer of metabolic adaptation in fungal commensals of humans and suggest that transporter gene expansion can shape microbial fitness in response to environmental nutrient signals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信