Ophélie Kot, Lois Lequesne, Hans Werner Mages, Steven Dubois, Paloma Piquet, François Becher, Bernard Maillère, Brigitte G Dorner, Stéphanie Simon, Daniel Stern, Hervé Nozach
{"title":"结合深度突变扫描和SPR分组方法进行抗蓖麻毒素抗体大规模表位鉴定。","authors":"Ophélie Kot, Lois Lequesne, Hans Werner Mages, Steven Dubois, Paloma Piquet, François Becher, Bernard Maillère, Brigitte G Dorner, Stéphanie Simon, Daniel Stern, Hervé Nozach","doi":"10.1080/19420862.2025.2544922","DOIUrl":null,"url":null,"abstract":"<p><p>Ricin, a ribosome-inactivating lectin from <i>Ricinus communis</i> seeds, has been used as a bioterrorism agent in multiple cases. While passive immunotherapy with anti-ricin antibodies shows promise in preclinical studies, no approved countermeasure exists. Developing effective monoclonal antibodies (mAbs) is challenging, requiring epitope targeting that ensures neutralization of the two most dominant natural ricin isoforms (D and E). Moreover, high-affinity binding does not always correlate with toxin neutralization, highlighting the importance of epitope specificity in driving protection. Here, we characterized a panel of 17 anti-ricin antibodies, including VHH and IgG mAbs, to determine their affinities, selectivity, and epitopes. Using surface plasmon resonance (SPR) and biolayer interferometry (BLI), we evaluated antibody affinities for the two ricin isoforms (D and E), as well as for ricin agglutinin, a related lectin with markedly lower toxicity. Epitope determination was performed using (1) SPR-based epitope binning, enhanced by network analysis for streamlined bin visualization, and (2) deep mutational scanning with yeast surface display to identify key epitope residues. BLI effectively distinguished low- and high-affinity interactions, while SPR provided superior resolution for determining the highest affinities and lowest dissociation rates. Both epitope-mapping strategies yielded highly consistent results, allowing the identification of critical epitopes associated with potent neutralization and cross-reactivity between ricin isoforms. This study advances our understanding of ricin neutralization by this panel of antibodies, providing key insights into their affinity, epitope specificity, and cross-reactivity. These findings contribute to the rational design of antibody-based therapeutics for ricin intoxication.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"17 1","pages":"2544922"},"PeriodicalIF":7.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407852/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combining deep mutational scanning and SPR binning approaches for large-scale epitope identification of anti-ricin antibodies.\",\"authors\":\"Ophélie Kot, Lois Lequesne, Hans Werner Mages, Steven Dubois, Paloma Piquet, François Becher, Bernard Maillère, Brigitte G Dorner, Stéphanie Simon, Daniel Stern, Hervé Nozach\",\"doi\":\"10.1080/19420862.2025.2544922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ricin, a ribosome-inactivating lectin from <i>Ricinus communis</i> seeds, has been used as a bioterrorism agent in multiple cases. While passive immunotherapy with anti-ricin antibodies shows promise in preclinical studies, no approved countermeasure exists. Developing effective monoclonal antibodies (mAbs) is challenging, requiring epitope targeting that ensures neutralization of the two most dominant natural ricin isoforms (D and E). Moreover, high-affinity binding does not always correlate with toxin neutralization, highlighting the importance of epitope specificity in driving protection. Here, we characterized a panel of 17 anti-ricin antibodies, including VHH and IgG mAbs, to determine their affinities, selectivity, and epitopes. Using surface plasmon resonance (SPR) and biolayer interferometry (BLI), we evaluated antibody affinities for the two ricin isoforms (D and E), as well as for ricin agglutinin, a related lectin with markedly lower toxicity. Epitope determination was performed using (1) SPR-based epitope binning, enhanced by network analysis for streamlined bin visualization, and (2) deep mutational scanning with yeast surface display to identify key epitope residues. BLI effectively distinguished low- and high-affinity interactions, while SPR provided superior resolution for determining the highest affinities and lowest dissociation rates. Both epitope-mapping strategies yielded highly consistent results, allowing the identification of critical epitopes associated with potent neutralization and cross-reactivity between ricin isoforms. This study advances our understanding of ricin neutralization by this panel of antibodies, providing key insights into their affinity, epitope specificity, and cross-reactivity. These findings contribute to the rational design of antibody-based therapeutics for ricin intoxication.</p>\",\"PeriodicalId\":18206,\"journal\":{\"name\":\"mAbs\",\"volume\":\"17 1\",\"pages\":\"2544922\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407852/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mAbs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19420862.2025.2544922\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2025.2544922","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Combining deep mutational scanning and SPR binning approaches for large-scale epitope identification of anti-ricin antibodies.
Ricin, a ribosome-inactivating lectin from Ricinus communis seeds, has been used as a bioterrorism agent in multiple cases. While passive immunotherapy with anti-ricin antibodies shows promise in preclinical studies, no approved countermeasure exists. Developing effective monoclonal antibodies (mAbs) is challenging, requiring epitope targeting that ensures neutralization of the two most dominant natural ricin isoforms (D and E). Moreover, high-affinity binding does not always correlate with toxin neutralization, highlighting the importance of epitope specificity in driving protection. Here, we characterized a panel of 17 anti-ricin antibodies, including VHH and IgG mAbs, to determine their affinities, selectivity, and epitopes. Using surface plasmon resonance (SPR) and biolayer interferometry (BLI), we evaluated antibody affinities for the two ricin isoforms (D and E), as well as for ricin agglutinin, a related lectin with markedly lower toxicity. Epitope determination was performed using (1) SPR-based epitope binning, enhanced by network analysis for streamlined bin visualization, and (2) deep mutational scanning with yeast surface display to identify key epitope residues. BLI effectively distinguished low- and high-affinity interactions, while SPR provided superior resolution for determining the highest affinities and lowest dissociation rates. Both epitope-mapping strategies yielded highly consistent results, allowing the identification of critical epitopes associated with potent neutralization and cross-reactivity between ricin isoforms. This study advances our understanding of ricin neutralization by this panel of antibodies, providing key insights into their affinity, epitope specificity, and cross-reactivity. These findings contribute to the rational design of antibody-based therapeutics for ricin intoxication.
期刊介绍:
mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.