湿法冶金中的林迪效应。

IF 3.2 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Journal of Sustainable Metallurgy Pub Date : 2025-01-01 Epub Date: 2025-05-22 DOI:10.1007/s40831-025-01119-x
Koen Binnemans, Peter Tom Jones
{"title":"湿法冶金中的林迪效应。","authors":"Koen Binnemans, Peter Tom Jones","doi":"10.1007/s40831-025-01119-x","DOIUrl":null,"url":null,"abstract":"<p><p>The Lindy Effect can be formulated as: <i>the older the technology, the longer it is expected to last</i>. In this paper, we examine the historical aspects of hydrometallurgy through the lens of the Lindy Effect, aiming to understand why research efforts by academic and industrial groups seldom result in new commercial hydrometallurgical processes. We argue that many researchers, particularly in academia, fail to recognize that mining and extractive metallurgy are economic activities. Companies engaged in mining, extraction, and refining of metals must generate profits to sustain their operations. The technical feasibility of a hydrometallurgical process does not inherently guarantee its economic viability. The industrial installations in a hydrometallurgical plant are highly capital-intensive. We will demonstrate that for the development of a robust hydrometallurgical process that could become Lindy-proof in the future, it is crucial to avoid fatal flaws arising from intrinsic problems with the chemical reactions behind the process. The concept of circular hydrometallurgy and its twelve principles provides a valuable framework for assessing the robustness of new hydrometallurgical processes. A paradigm shift in hydrometallurgy is anticipated with the widespread availability of inexpensive, renewable energy. High energy costs will no longer be a prohibitive factor, allowing the development of energy-intensive processes that offer significant chemical advantages. This shift may even lead to a reconsideration of older hydrometallurgical processes that were previously deemed too energy-intensive.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"11 3","pages":"2157-2174"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397165/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lindy Effect in Hydrometallurgy.\",\"authors\":\"Koen Binnemans, Peter Tom Jones\",\"doi\":\"10.1007/s40831-025-01119-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Lindy Effect can be formulated as: <i>the older the technology, the longer it is expected to last</i>. In this paper, we examine the historical aspects of hydrometallurgy through the lens of the Lindy Effect, aiming to understand why research efforts by academic and industrial groups seldom result in new commercial hydrometallurgical processes. We argue that many researchers, particularly in academia, fail to recognize that mining and extractive metallurgy are economic activities. Companies engaged in mining, extraction, and refining of metals must generate profits to sustain their operations. The technical feasibility of a hydrometallurgical process does not inherently guarantee its economic viability. The industrial installations in a hydrometallurgical plant are highly capital-intensive. We will demonstrate that for the development of a robust hydrometallurgical process that could become Lindy-proof in the future, it is crucial to avoid fatal flaws arising from intrinsic problems with the chemical reactions behind the process. The concept of circular hydrometallurgy and its twelve principles provides a valuable framework for assessing the robustness of new hydrometallurgical processes. A paradigm shift in hydrometallurgy is anticipated with the widespread availability of inexpensive, renewable energy. High energy costs will no longer be a prohibitive factor, allowing the development of energy-intensive processes that offer significant chemical advantages. This shift may even lead to a reconsideration of older hydrometallurgical processes that were previously deemed too energy-intensive.</p><p><strong>Graphical abstract: </strong></p>\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":\"11 3\",\"pages\":\"2157-2174\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397165/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-025-01119-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-025-01119-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

林迪效应可以表述为:技术越老,预期寿命越长。在本文中,我们通过林迪效应的镜头审视湿法冶金的历史方面,旨在理解为什么学术和工业团体的研究努力很少导致新的商业湿法冶金工艺。我们认为,许多研究人员,特别是学术界的研究人员,没有认识到采矿和冶炼是经济活动。从事金属开采、提炼和精炼的公司必须产生利润来维持其经营。湿法冶金工艺的技术可行性并不一定保证其经济可行性。湿法冶金厂的工业设施是高度资本密集型的。我们将证明,为了开发一个强大的湿法冶金工艺,在未来可能成为林迪证明,避免由工艺背后的化学反应的内在问题引起的致命缺陷是至关重要的。循环湿法冶金的概念及其十二项原则为评估新的湿法冶金工艺的稳健性提供了一个有价值的框架。随着廉价可再生能源的广泛使用,湿法冶金的模式有望发生转变。高昂的能源成本将不再是一个令人望而却步的因素,从而允许开发具有重大化学优势的能源密集型工艺。这种转变甚至可能导致人们重新考虑以前被认为过于耗能的老式湿法冶金工艺。图形化的简介:
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lindy Effect in Hydrometallurgy.

Lindy Effect in Hydrometallurgy.

Lindy Effect in Hydrometallurgy.

Lindy Effect in Hydrometallurgy.

The Lindy Effect can be formulated as: the older the technology, the longer it is expected to last. In this paper, we examine the historical aspects of hydrometallurgy through the lens of the Lindy Effect, aiming to understand why research efforts by academic and industrial groups seldom result in new commercial hydrometallurgical processes. We argue that many researchers, particularly in academia, fail to recognize that mining and extractive metallurgy are economic activities. Companies engaged in mining, extraction, and refining of metals must generate profits to sustain their operations. The technical feasibility of a hydrometallurgical process does not inherently guarantee its economic viability. The industrial installations in a hydrometallurgical plant are highly capital-intensive. We will demonstrate that for the development of a robust hydrometallurgical process that could become Lindy-proof in the future, it is crucial to avoid fatal flaws arising from intrinsic problems with the chemical reactions behind the process. The concept of circular hydrometallurgy and its twelve principles provides a valuable framework for assessing the robustness of new hydrometallurgical processes. A paradigm shift in hydrometallurgy is anticipated with the widespread availability of inexpensive, renewable energy. High energy costs will no longer be a prohibitive factor, allowing the development of energy-intensive processes that offer significant chemical advantages. This shift may even lead to a reconsideration of older hydrometallurgical processes that were previously deemed too energy-intensive.

Graphical abstract:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sustainable Metallurgy
Journal of Sustainable Metallurgy Materials Science-Metals and Alloys
CiteScore
4.00
自引率
12.50%
发文量
151
期刊介绍: Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信