{"title":"湿法冶金中的林迪效应。","authors":"Koen Binnemans, Peter Tom Jones","doi":"10.1007/s40831-025-01119-x","DOIUrl":null,"url":null,"abstract":"<p><p>The Lindy Effect can be formulated as: <i>the older the technology, the longer it is expected to last</i>. In this paper, we examine the historical aspects of hydrometallurgy through the lens of the Lindy Effect, aiming to understand why research efforts by academic and industrial groups seldom result in new commercial hydrometallurgical processes. We argue that many researchers, particularly in academia, fail to recognize that mining and extractive metallurgy are economic activities. Companies engaged in mining, extraction, and refining of metals must generate profits to sustain their operations. The technical feasibility of a hydrometallurgical process does not inherently guarantee its economic viability. The industrial installations in a hydrometallurgical plant are highly capital-intensive. We will demonstrate that for the development of a robust hydrometallurgical process that could become Lindy-proof in the future, it is crucial to avoid fatal flaws arising from intrinsic problems with the chemical reactions behind the process. The concept of circular hydrometallurgy and its twelve principles provides a valuable framework for assessing the robustness of new hydrometallurgical processes. A paradigm shift in hydrometallurgy is anticipated with the widespread availability of inexpensive, renewable energy. High energy costs will no longer be a prohibitive factor, allowing the development of energy-intensive processes that offer significant chemical advantages. This shift may even lead to a reconsideration of older hydrometallurgical processes that were previously deemed too energy-intensive.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"11 3","pages":"2157-2174"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397165/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lindy Effect in Hydrometallurgy.\",\"authors\":\"Koen Binnemans, Peter Tom Jones\",\"doi\":\"10.1007/s40831-025-01119-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Lindy Effect can be formulated as: <i>the older the technology, the longer it is expected to last</i>. In this paper, we examine the historical aspects of hydrometallurgy through the lens of the Lindy Effect, aiming to understand why research efforts by academic and industrial groups seldom result in new commercial hydrometallurgical processes. We argue that many researchers, particularly in academia, fail to recognize that mining and extractive metallurgy are economic activities. Companies engaged in mining, extraction, and refining of metals must generate profits to sustain their operations. The technical feasibility of a hydrometallurgical process does not inherently guarantee its economic viability. The industrial installations in a hydrometallurgical plant are highly capital-intensive. We will demonstrate that for the development of a robust hydrometallurgical process that could become Lindy-proof in the future, it is crucial to avoid fatal flaws arising from intrinsic problems with the chemical reactions behind the process. The concept of circular hydrometallurgy and its twelve principles provides a valuable framework for assessing the robustness of new hydrometallurgical processes. A paradigm shift in hydrometallurgy is anticipated with the widespread availability of inexpensive, renewable energy. High energy costs will no longer be a prohibitive factor, allowing the development of energy-intensive processes that offer significant chemical advantages. This shift may even lead to a reconsideration of older hydrometallurgical processes that were previously deemed too energy-intensive.</p><p><strong>Graphical abstract: </strong></p>\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":\"11 3\",\"pages\":\"2157-2174\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397165/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-025-01119-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-025-01119-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The Lindy Effect can be formulated as: the older the technology, the longer it is expected to last. In this paper, we examine the historical aspects of hydrometallurgy through the lens of the Lindy Effect, aiming to understand why research efforts by academic and industrial groups seldom result in new commercial hydrometallurgical processes. We argue that many researchers, particularly in academia, fail to recognize that mining and extractive metallurgy are economic activities. Companies engaged in mining, extraction, and refining of metals must generate profits to sustain their operations. The technical feasibility of a hydrometallurgical process does not inherently guarantee its economic viability. The industrial installations in a hydrometallurgical plant are highly capital-intensive. We will demonstrate that for the development of a robust hydrometallurgical process that could become Lindy-proof in the future, it is crucial to avoid fatal flaws arising from intrinsic problems with the chemical reactions behind the process. The concept of circular hydrometallurgy and its twelve principles provides a valuable framework for assessing the robustness of new hydrometallurgical processes. A paradigm shift in hydrometallurgy is anticipated with the widespread availability of inexpensive, renewable energy. High energy costs will no longer be a prohibitive factor, allowing the development of energy-intensive processes that offer significant chemical advantages. This shift may even lead to a reconsideration of older hydrometallurgical processes that were previously deemed too energy-intensive.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.