Valentina Bellini, Francesco Calabrò, Elena Bignami, Tudor Mihai Haja, Iben Fasterholdt, Benjamin Sb Rasmussen, Rossana Cecchi
{"title":"人工智能价值评估模型(MAS-AI)框架在组织人工智能中的应用——以意大利手术调度评估为例","authors":"Valentina Bellini, Francesco Calabrò, Elena Bignami, Tudor Mihai Haja, Iben Fasterholdt, Benjamin Sb Rasmussen, Rossana Cecchi","doi":"10.1007/s10916-025-02235-7","DOIUrl":null,"url":null,"abstract":"<p><p>This work aims to explore the transferability of the Model for Assessing the value of Artificial Intelligence in medical imaging (MAS-AI) in the Italian context through a case-study.We applied the MAS-AI, a model for assessing AI in healthcare, to fulfil a technology assessment of an AI model developed within our institution. The model, called New organization model for the surgical unit (BLOC-OP), uses AI to improve the schedule efficiency of the surgical unit. The analysis of BLOC-OP's features, as they were described in the project presentation, was conducted through the requirements for the assessment contained in the MAS-AI model.The methodological framework of MAS-AI was fully followed, allowing us to conduct a comprehensive assessment of the BLOC-OP model in all its aspects. We provided a detailed description of each domain within the framework, along with a summary table.The case study demonstrates the feasibility of applying MAS-AI to organizational AI models in a national context different from where the framework was originally developed. Rather than proposing a new model, we tested the adaptability of MAS-AI in evaluating a non-imaging AI system. This confirms its flexibility beyond its original scope and supports its potential as a generalizable tool for AI evaluation in healthcare.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"108"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373541/pdf/","citationCount":"0","resultStr":"{\"title\":\"Applying the Model for Assessing the Value of AI (MAS-AI) Framework To Organizational AI: A Case Study of Surgical Scheduling Assessment in Italy.\",\"authors\":\"Valentina Bellini, Francesco Calabrò, Elena Bignami, Tudor Mihai Haja, Iben Fasterholdt, Benjamin Sb Rasmussen, Rossana Cecchi\",\"doi\":\"10.1007/s10916-025-02235-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work aims to explore the transferability of the Model for Assessing the value of Artificial Intelligence in medical imaging (MAS-AI) in the Italian context through a case-study.We applied the MAS-AI, a model for assessing AI in healthcare, to fulfil a technology assessment of an AI model developed within our institution. The model, called New organization model for the surgical unit (BLOC-OP), uses AI to improve the schedule efficiency of the surgical unit. The analysis of BLOC-OP's features, as they were described in the project presentation, was conducted through the requirements for the assessment contained in the MAS-AI model.The methodological framework of MAS-AI was fully followed, allowing us to conduct a comprehensive assessment of the BLOC-OP model in all its aspects. We provided a detailed description of each domain within the framework, along with a summary table.The case study demonstrates the feasibility of applying MAS-AI to organizational AI models in a national context different from where the framework was originally developed. Rather than proposing a new model, we tested the adaptability of MAS-AI in evaluating a non-imaging AI system. This confirms its flexibility beyond its original scope and supports its potential as a generalizable tool for AI evaluation in healthcare.</p>\",\"PeriodicalId\":16338,\"journal\":{\"name\":\"Journal of Medical Systems\",\"volume\":\"49 1\",\"pages\":\"108\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373541/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10916-025-02235-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02235-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Applying the Model for Assessing the Value of AI (MAS-AI) Framework To Organizational AI: A Case Study of Surgical Scheduling Assessment in Italy.
This work aims to explore the transferability of the Model for Assessing the value of Artificial Intelligence in medical imaging (MAS-AI) in the Italian context through a case-study.We applied the MAS-AI, a model for assessing AI in healthcare, to fulfil a technology assessment of an AI model developed within our institution. The model, called New organization model for the surgical unit (BLOC-OP), uses AI to improve the schedule efficiency of the surgical unit. The analysis of BLOC-OP's features, as they were described in the project presentation, was conducted through the requirements for the assessment contained in the MAS-AI model.The methodological framework of MAS-AI was fully followed, allowing us to conduct a comprehensive assessment of the BLOC-OP model in all its aspects. We provided a detailed description of each domain within the framework, along with a summary table.The case study demonstrates the feasibility of applying MAS-AI to organizational AI models in a national context different from where the framework was originally developed. Rather than proposing a new model, we tested the adaptability of MAS-AI in evaluating a non-imaging AI system. This confirms its flexibility beyond its original scope and supports its potential as a generalizable tool for AI evaluation in healthcare.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.