{"title":"血清和粪便代谢物的综合分析揭示了胆汁酸代谢在药物性肝损伤中的作用:对诊断和预后生物标志物的影响。","authors":"Simiao Yu, Sici Wang, Ping Li, Haocheng Zheng, Jing Jing, Tingting He, Xia Ding, Ruilin Wang","doi":"10.14218/JCTH.2025.00073","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Drug-induced liver injury (DILI) represents a prevalent adverse event associated with medication use. However, the exact mechanisms underlying DILI remain incompletely understood, and the lack of specific diagnostic and prognostic biomarkers poses significant challenges to the clinical diagnosis and treatment of this condition. Consequently, our study aimed to endeavor to identify serum and fecal metabolic biomarkers, enabling more accurate DILI diagnosis and improved prediction of chronic progression.</p><p><strong>Methods: </strong>Untargeted metabolomics analysis was performed on serum and fecal samples obtained from a cohort of 32 DILI patients (causality confirmed via the updated Roussel Uclaf Causality Assessment Method) and 36 healthy controls. Utilizing techniques such as partial least squares-discriminant analysis modeling and t-tests, we identified significantly differentially expressed metabolites and metabolite sets. Causality assessment was performed using the updated Roussel Uclaf Causality Assessment Method.</p><p><strong>Results: </strong>The findings from the analysis of serum and fecal metabolomics association pathways suggested that perturbations in bile acid metabolism might serve as potential mechanisms underlying the progression of DILI. Our study revealed 22 overlapping differential metabolites between serum and feces, displaying significant concentration differences between the DILI and healthy control groups. Notably, we identified chenodeoxycholic acid and deoxycholic acid as promising markers that not only distinguished DILI patients from healthy individuals but also exhibited predictive potential for DILI chronicity.</p><p><strong>Conclusions: </strong>The integrated analysis of serum and fecal metabolites uncovers the significant disruption of bile acid metabolites as a key contributing factor in the pathogenesis of DILI. Our study offers promising potential biomarkers for the diagnosis and prognosis of DILI, paving the way for a novel perspective in the realm of DILI diagnosis and treatment.</p>","PeriodicalId":15484,"journal":{"name":"Journal of Clinical and Translational Hepatology","volume":"13 8","pages":"619-629"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12375820/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated Analysis of Serum and Fecal Metabolites Reveals the Role of Bile Acid Metabolism in Drug-induced Liver Injury: Implications for Diagnostic and Prognostic Biomarkers.\",\"authors\":\"Simiao Yu, Sici Wang, Ping Li, Haocheng Zheng, Jing Jing, Tingting He, Xia Ding, Ruilin Wang\",\"doi\":\"10.14218/JCTH.2025.00073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Drug-induced liver injury (DILI) represents a prevalent adverse event associated with medication use. However, the exact mechanisms underlying DILI remain incompletely understood, and the lack of specific diagnostic and prognostic biomarkers poses significant challenges to the clinical diagnosis and treatment of this condition. Consequently, our study aimed to endeavor to identify serum and fecal metabolic biomarkers, enabling more accurate DILI diagnosis and improved prediction of chronic progression.</p><p><strong>Methods: </strong>Untargeted metabolomics analysis was performed on serum and fecal samples obtained from a cohort of 32 DILI patients (causality confirmed via the updated Roussel Uclaf Causality Assessment Method) and 36 healthy controls. Utilizing techniques such as partial least squares-discriminant analysis modeling and t-tests, we identified significantly differentially expressed metabolites and metabolite sets. Causality assessment was performed using the updated Roussel Uclaf Causality Assessment Method.</p><p><strong>Results: </strong>The findings from the analysis of serum and fecal metabolomics association pathways suggested that perturbations in bile acid metabolism might serve as potential mechanisms underlying the progression of DILI. Our study revealed 22 overlapping differential metabolites between serum and feces, displaying significant concentration differences between the DILI and healthy control groups. Notably, we identified chenodeoxycholic acid and deoxycholic acid as promising markers that not only distinguished DILI patients from healthy individuals but also exhibited predictive potential for DILI chronicity.</p><p><strong>Conclusions: </strong>The integrated analysis of serum and fecal metabolites uncovers the significant disruption of bile acid metabolites as a key contributing factor in the pathogenesis of DILI. Our study offers promising potential biomarkers for the diagnosis and prognosis of DILI, paving the way for a novel perspective in the realm of DILI diagnosis and treatment.</p>\",\"PeriodicalId\":15484,\"journal\":{\"name\":\"Journal of Clinical and Translational Hepatology\",\"volume\":\"13 8\",\"pages\":\"619-629\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12375820/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical and Translational Hepatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14218/JCTH.2025.00073\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical and Translational Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14218/JCTH.2025.00073","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Integrated Analysis of Serum and Fecal Metabolites Reveals the Role of Bile Acid Metabolism in Drug-induced Liver Injury: Implications for Diagnostic and Prognostic Biomarkers.
Background and aims: Drug-induced liver injury (DILI) represents a prevalent adverse event associated with medication use. However, the exact mechanisms underlying DILI remain incompletely understood, and the lack of specific diagnostic and prognostic biomarkers poses significant challenges to the clinical diagnosis and treatment of this condition. Consequently, our study aimed to endeavor to identify serum and fecal metabolic biomarkers, enabling more accurate DILI diagnosis and improved prediction of chronic progression.
Methods: Untargeted metabolomics analysis was performed on serum and fecal samples obtained from a cohort of 32 DILI patients (causality confirmed via the updated Roussel Uclaf Causality Assessment Method) and 36 healthy controls. Utilizing techniques such as partial least squares-discriminant analysis modeling and t-tests, we identified significantly differentially expressed metabolites and metabolite sets. Causality assessment was performed using the updated Roussel Uclaf Causality Assessment Method.
Results: The findings from the analysis of serum and fecal metabolomics association pathways suggested that perturbations in bile acid metabolism might serve as potential mechanisms underlying the progression of DILI. Our study revealed 22 overlapping differential metabolites between serum and feces, displaying significant concentration differences between the DILI and healthy control groups. Notably, we identified chenodeoxycholic acid and deoxycholic acid as promising markers that not only distinguished DILI patients from healthy individuals but also exhibited predictive potential for DILI chronicity.
Conclusions: The integrated analysis of serum and fecal metabolites uncovers the significant disruption of bile acid metabolites as a key contributing factor in the pathogenesis of DILI. Our study offers promising potential biomarkers for the diagnosis and prognosis of DILI, paving the way for a novel perspective in the realm of DILI diagnosis and treatment.