{"title":"酵母线粒体中COX1 mRNA翻译激活机制的研究。","authors":"Angelica Zamudio-Ochoa, Yolanda Camacho-Villasana, Ulrik Pedroza-Dávila, Aldo E García-Guerrero, Xochitl Pérez-Martínez","doi":"10.1242/jcs.263694","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial translation is a crucial regulatory step in mitochondrial genome expression. In Saccharomyces cerevisiae, translational activators are believed to bind to the 5' UTRs of their target mRNAs to position the mitochondrial ribosome at the start codon. Pet309 and Mss51 are translational activators of COX1 mRNA, which encodes subunit one of cytochrome c oxidase. Pet309 physically interacts with COX1 mRNA, but no direct interaction of Mss51 with its target mRNA has been detected. Currently, the mechanisms underlying translational activation of COX1, or any other mitochondrial gene, remain poorly understood. To explore in depth the mechanism of COX1 mRNA translational activation, we studied the association of Pet309 and Mss51 with the mitochondrial ribosome. Both Pet309 and Mss51 interact with the mitoribosome regardless of the presence of COX1 mRNA or of each other. The association of Pet309 with the ribosome and with COX1 mRNA depends on its N-terminal domain. These findings indicate that Pet309 and Mss51 stably interact with the mitoribosome independently of active translation. By integrating our data with previously published research, we propose a new mechanism of COX1 mRNA translation activation.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"138 16","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450462/pdf/","citationCount":"0","resultStr":"{\"title\":\"Insights into the translational activation mechanisms of the COX1 mRNA in yeast mitochondria.\",\"authors\":\"Angelica Zamudio-Ochoa, Yolanda Camacho-Villasana, Ulrik Pedroza-Dávila, Aldo E García-Guerrero, Xochitl Pérez-Martínez\",\"doi\":\"10.1242/jcs.263694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial translation is a crucial regulatory step in mitochondrial genome expression. In Saccharomyces cerevisiae, translational activators are believed to bind to the 5' UTRs of their target mRNAs to position the mitochondrial ribosome at the start codon. Pet309 and Mss51 are translational activators of COX1 mRNA, which encodes subunit one of cytochrome c oxidase. Pet309 physically interacts with COX1 mRNA, but no direct interaction of Mss51 with its target mRNA has been detected. Currently, the mechanisms underlying translational activation of COX1, or any other mitochondrial gene, remain poorly understood. To explore in depth the mechanism of COX1 mRNA translational activation, we studied the association of Pet309 and Mss51 with the mitochondrial ribosome. Both Pet309 and Mss51 interact with the mitoribosome regardless of the presence of COX1 mRNA or of each other. The association of Pet309 with the ribosome and with COX1 mRNA depends on its N-terminal domain. These findings indicate that Pet309 and Mss51 stably interact with the mitoribosome independently of active translation. By integrating our data with previously published research, we propose a new mechanism of COX1 mRNA translation activation.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\"138 16\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450462/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.263694\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263694","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Insights into the translational activation mechanisms of the COX1 mRNA in yeast mitochondria.
Mitochondrial translation is a crucial regulatory step in mitochondrial genome expression. In Saccharomyces cerevisiae, translational activators are believed to bind to the 5' UTRs of their target mRNAs to position the mitochondrial ribosome at the start codon. Pet309 and Mss51 are translational activators of COX1 mRNA, which encodes subunit one of cytochrome c oxidase. Pet309 physically interacts with COX1 mRNA, but no direct interaction of Mss51 with its target mRNA has been detected. Currently, the mechanisms underlying translational activation of COX1, or any other mitochondrial gene, remain poorly understood. To explore in depth the mechanism of COX1 mRNA translational activation, we studied the association of Pet309 and Mss51 with the mitochondrial ribosome. Both Pet309 and Mss51 interact with the mitoribosome regardless of the presence of COX1 mRNA or of each other. The association of Pet309 with the ribosome and with COX1 mRNA depends on its N-terminal domain. These findings indicate that Pet309 and Mss51 stably interact with the mitoribosome independently of active translation. By integrating our data with previously published research, we propose a new mechanism of COX1 mRNA translation activation.