及时切除原噬菌体Φ13对金黄色葡萄球菌感染过程至关重要。

IF 2.8 3区 医学 Q3 IMMUNOLOGY
Infection and Immunity Pub Date : 2025-10-14 Epub Date: 2025-09-03 DOI:10.1128/iai.00314-25
Olivier Poupel, Gérald Kenanian, Lhousseine Touqui, Charlotte Abrial, Tarek Msadek, Sarah Dubrac
{"title":"及时切除原噬菌体Φ13对金黄色葡萄球菌感染过程至关重要。","authors":"Olivier Poupel, Gérald Kenanian, Lhousseine Touqui, Charlotte Abrial, Tarek Msadek, Sarah Dubrac","doi":"10.1128/iai.00314-25","DOIUrl":null,"url":null,"abstract":"<p><p>Mobile genetic elements play an essential part in the infectious process of major pathogens, yet the role of prophage dynamics in <i>Staphylococcus aureus</i> pathogenesis is still not well understood. Here, we studied the impact of the Φ13 <i>hlb-</i>converting prophage, whose integration inactivates the <i>hlb</i> β-toxin gene, on staphylococcal pathogenesis. We showed that prophage Φ13 is lost in approximately half the bacterial population during the course of infection. Inactivation of the Φ13 <i>int</i> recombinase gene, essential for insertion/excision, locked the prophage in the bacterial chromosome, leading to a significant loss of virulence in a murine systemic infection model. In contrast, the non-lysogen strain (ΔΦ13), where the <i>hlb</i> beta-hemolysin gene is reconstituted, displayed strongly increased virulence. Accordingly, histopathological analyses revealed more severe nephritis in mice infected with bacteria lacking prophage Φ13 (ΔΦ13), compared to infection with the parental strain. Infection with the ∆<i>int</i> mutant, where beta-hemolysin production is abolished, led to the least severe renal lesions. Cytokine induction in a human neutrophil model showed significantly increased IL-6 expression following infection with the beta-hemolysin producing strain (ΔΦ13). Our results indicate that timely <i>in vivo</i> excision of the Φ13 prophage is essential for progression of the <i>S. aureus</i> infectious process: early excision leads to rapid host death, whereas the inability to excise the prophage significantly reduces staphylococcal virulence.IMPORTANCEThis study highlights prophage Φ13 excision as a critical factor in <i>Staphylococcus aureus</i> pathogenesis, influencing infection outcomes by balancing rapid host killing with reduced bacterial virulence. This mechanism may represent a bet-hedging strategy in genetic regulation, resulting in a mixed bacterial population capable of rapidly switching between two processes: bacterial colonization and host damage. Unraveling this dynamic opens new possibilities for developing targeted therapies to disrupt or modulate prophage activity, offering a novel approach to mitigating <i>S. aureus</i> infections.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0031425"},"PeriodicalIF":2.8000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12519783/pdf/","citationCount":"0","resultStr":"{\"title\":\"Timely excision of prophage Φ13 is essential for the <i>Staphylococcus aureus</i> infectious process.\",\"authors\":\"Olivier Poupel, Gérald Kenanian, Lhousseine Touqui, Charlotte Abrial, Tarek Msadek, Sarah Dubrac\",\"doi\":\"10.1128/iai.00314-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mobile genetic elements play an essential part in the infectious process of major pathogens, yet the role of prophage dynamics in <i>Staphylococcus aureus</i> pathogenesis is still not well understood. Here, we studied the impact of the Φ13 <i>hlb-</i>converting prophage, whose integration inactivates the <i>hlb</i> β-toxin gene, on staphylococcal pathogenesis. We showed that prophage Φ13 is lost in approximately half the bacterial population during the course of infection. Inactivation of the Φ13 <i>int</i> recombinase gene, essential for insertion/excision, locked the prophage in the bacterial chromosome, leading to a significant loss of virulence in a murine systemic infection model. In contrast, the non-lysogen strain (ΔΦ13), where the <i>hlb</i> beta-hemolysin gene is reconstituted, displayed strongly increased virulence. Accordingly, histopathological analyses revealed more severe nephritis in mice infected with bacteria lacking prophage Φ13 (ΔΦ13), compared to infection with the parental strain. Infection with the ∆<i>int</i> mutant, where beta-hemolysin production is abolished, led to the least severe renal lesions. Cytokine induction in a human neutrophil model showed significantly increased IL-6 expression following infection with the beta-hemolysin producing strain (ΔΦ13). Our results indicate that timely <i>in vivo</i> excision of the Φ13 prophage is essential for progression of the <i>S. aureus</i> infectious process: early excision leads to rapid host death, whereas the inability to excise the prophage significantly reduces staphylococcal virulence.IMPORTANCEThis study highlights prophage Φ13 excision as a critical factor in <i>Staphylococcus aureus</i> pathogenesis, influencing infection outcomes by balancing rapid host killing with reduced bacterial virulence. This mechanism may represent a bet-hedging strategy in genetic regulation, resulting in a mixed bacterial population capable of rapidly switching between two processes: bacterial colonization and host damage. Unraveling this dynamic opens new possibilities for developing targeted therapies to disrupt or modulate prophage activity, offering a novel approach to mitigating <i>S. aureus</i> infections.</p>\",\"PeriodicalId\":13541,\"journal\":{\"name\":\"Infection and Immunity\",\"volume\":\" \",\"pages\":\"e0031425\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12519783/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/iai.00314-25\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00314-25","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

移动遗传元件在主要病原体的感染过程中起着重要作用,但在金黄色葡萄球菌的发病机制中,前噬菌体动力学的作用尚不清楚。在这里,我们研究了Φ13转化hlb的噬菌体,其整合使hlb β-毒素基因失活,对葡萄球菌发病机制的影响。我们发现,在感染过程中,大约一半的细菌种群中丢失了原噬菌体Φ13。对于插入/切除至关重要的Φ13重组酶基因失活,锁定了细菌染色体上的噬菌体,导致小鼠全身性感染模型中毒力的显著丧失。相比之下,重组hlb -溶血素基因的非溶血原菌株(ΔΦ13)显示出强烈增加的毒力。因此,组织病理学分析显示,与感染亲本菌株相比,感染缺乏原噬菌体Φ13 (ΔΦ13)细菌的小鼠肾炎更严重。感染∆int突变体,β溶血素的产生被消除,导致最不严重的肾脏病变。细胞因子诱导的人中性粒细胞模型显示,感染β -溶血素产生菌株后IL-6表达显著增加(ΔΦ13)。我们的研究结果表明,在体内及时切除Φ13噬菌体对于金黄色葡萄球菌感染过程的进展至关重要:早期切除会导致宿主快速死亡,而无法切除噬菌体会显著降低葡萄球菌的毒力。这项研究强调了原噬菌体Φ13切除是金黄色葡萄球菌发病的一个关键因素,通过平衡快速杀死宿主和降低细菌毒力来影响感染结果。这种机制可能代表了遗传调控中的一种下注对冲策略,导致混合细菌群体能够在两个过程之间快速切换:细菌定植和宿主损伤。揭示这一动态为开发靶向治疗来破坏或调节前噬菌体活性开辟了新的可能性,提供了一种减轻金黄色葡萄球菌感染的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Timely excision of prophage Φ13 is essential for the Staphylococcus aureus infectious process.

Mobile genetic elements play an essential part in the infectious process of major pathogens, yet the role of prophage dynamics in Staphylococcus aureus pathogenesis is still not well understood. Here, we studied the impact of the Φ13 hlb-converting prophage, whose integration inactivates the hlb β-toxin gene, on staphylococcal pathogenesis. We showed that prophage Φ13 is lost in approximately half the bacterial population during the course of infection. Inactivation of the Φ13 int recombinase gene, essential for insertion/excision, locked the prophage in the bacterial chromosome, leading to a significant loss of virulence in a murine systemic infection model. In contrast, the non-lysogen strain (ΔΦ13), where the hlb beta-hemolysin gene is reconstituted, displayed strongly increased virulence. Accordingly, histopathological analyses revealed more severe nephritis in mice infected with bacteria lacking prophage Φ13 (ΔΦ13), compared to infection with the parental strain. Infection with the ∆int mutant, where beta-hemolysin production is abolished, led to the least severe renal lesions. Cytokine induction in a human neutrophil model showed significantly increased IL-6 expression following infection with the beta-hemolysin producing strain (ΔΦ13). Our results indicate that timely in vivo excision of the Φ13 prophage is essential for progression of the S. aureus infectious process: early excision leads to rapid host death, whereas the inability to excise the prophage significantly reduces staphylococcal virulence.IMPORTANCEThis study highlights prophage Φ13 excision as a critical factor in Staphylococcus aureus pathogenesis, influencing infection outcomes by balancing rapid host killing with reduced bacterial virulence. This mechanism may represent a bet-hedging strategy in genetic regulation, resulting in a mixed bacterial population capable of rapidly switching between two processes: bacterial colonization and host damage. Unraveling this dynamic opens new possibilities for developing targeted therapies to disrupt or modulate prophage activity, offering a novel approach to mitigating S. aureus infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infection and Immunity
Infection and Immunity 医学-传染病学
CiteScore
6.00
自引率
6.50%
发文量
268
审稿时长
3 months
期刊介绍: Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信