Hui-Qi Qu, Kushagra Goel, Kayleigh Ostberg, Diana J Slater, Fengxiang Wang, James Snyder, Cuiping Hou, Garnet Eister, John J Connolly, Michael March, Joseph T Glessner, Charlly Kao, Hakon Hakonarson
{"title":"通过单细胞RNA测序研究单心室/左心发育不全综合征患者外周血中的自然杀伤细胞亚群","authors":"Hui-Qi Qu, Kushagra Goel, Kayleigh Ostberg, Diana J Slater, Fengxiang Wang, James Snyder, Cuiping Hou, Garnet Eister, John J Connolly, Michael March, Joseph T Glessner, Charlly Kao, Hakon Hakonarson","doi":"10.3389/ebm.2025.10524","DOIUrl":null,"url":null,"abstract":"<p><p>Natural Killer (NK) cells are integral components of the innate immune system, recognizing and eliminating virus-infected cells. They may play a crucial role in the immune response and contribute to the complications associated with Single Ventricle/Hypoplastic Left Heart Syndrome (SV/HLHS). Utilizing single-cell RNA sequencing (scRNA-seq), NK cells from peripheral blood mononuclear cells (PBMCs) were analyzed in three de-identified SV/HLHS cases and three healthy controls. This study identified two novel NK cell subpopulations that could not be detected by conventional scRNA-seq pipelines or traditional flow cytometry. These subpopulations exhibit distinct gene expression profiles linked to the heterogeneity of immune responsiveness and stress adaptation in NK cells. In SV/HLHS patients, one cluster showed a significant upregulation of androgen response and downregulation of heme metabolism compared to healthy controls. Our study offers new insights into the fine-tuning of immune modulation that could help mitigate complications in SV/HLHS. It suggests that while NK cells in SV/HLHS adapt to support survival in a challenging physiological environment, these adaptations may compromise their ability to effectively respond to additional stresses, such as infections and inflammation.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":"250 ","pages":"10524"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390855/pdf/","citationCount":"0","resultStr":"{\"title\":\"Natural killer cell subpopulations in the peripheral blood of single ventricle/hypoplastic left heart syndrome patients via single-cell RNA sequencing.\",\"authors\":\"Hui-Qi Qu, Kushagra Goel, Kayleigh Ostberg, Diana J Slater, Fengxiang Wang, James Snyder, Cuiping Hou, Garnet Eister, John J Connolly, Michael March, Joseph T Glessner, Charlly Kao, Hakon Hakonarson\",\"doi\":\"10.3389/ebm.2025.10524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural Killer (NK) cells are integral components of the innate immune system, recognizing and eliminating virus-infected cells. They may play a crucial role in the immune response and contribute to the complications associated with Single Ventricle/Hypoplastic Left Heart Syndrome (SV/HLHS). Utilizing single-cell RNA sequencing (scRNA-seq), NK cells from peripheral blood mononuclear cells (PBMCs) were analyzed in three de-identified SV/HLHS cases and three healthy controls. This study identified two novel NK cell subpopulations that could not be detected by conventional scRNA-seq pipelines or traditional flow cytometry. These subpopulations exhibit distinct gene expression profiles linked to the heterogeneity of immune responsiveness and stress adaptation in NK cells. In SV/HLHS patients, one cluster showed a significant upregulation of androgen response and downregulation of heme metabolism compared to healthy controls. Our study offers new insights into the fine-tuning of immune modulation that could help mitigate complications in SV/HLHS. It suggests that while NK cells in SV/HLHS adapt to support survival in a challenging physiological environment, these adaptations may compromise their ability to effectively respond to additional stresses, such as infections and inflammation.</p>\",\"PeriodicalId\":12163,\"journal\":{\"name\":\"Experimental Biology and Medicine\",\"volume\":\"250 \",\"pages\":\"10524\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390855/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/ebm.2025.10524\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/ebm.2025.10524","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Natural killer cell subpopulations in the peripheral blood of single ventricle/hypoplastic left heart syndrome patients via single-cell RNA sequencing.
Natural Killer (NK) cells are integral components of the innate immune system, recognizing and eliminating virus-infected cells. They may play a crucial role in the immune response and contribute to the complications associated with Single Ventricle/Hypoplastic Left Heart Syndrome (SV/HLHS). Utilizing single-cell RNA sequencing (scRNA-seq), NK cells from peripheral blood mononuclear cells (PBMCs) were analyzed in three de-identified SV/HLHS cases and three healthy controls. This study identified two novel NK cell subpopulations that could not be detected by conventional scRNA-seq pipelines or traditional flow cytometry. These subpopulations exhibit distinct gene expression profiles linked to the heterogeneity of immune responsiveness and stress adaptation in NK cells. In SV/HLHS patients, one cluster showed a significant upregulation of androgen response and downregulation of heme metabolism compared to healthy controls. Our study offers new insights into the fine-tuning of immune modulation that could help mitigate complications in SV/HLHS. It suggests that while NK cells in SV/HLHS adapt to support survival in a challenging physiological environment, these adaptations may compromise their ability to effectively respond to additional stresses, such as infections and inflammation.
期刊介绍:
Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population.
Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.