Lucie Bracq, Audrey Chuat, Béatrice Kunz, Olivier Burri, Romain Guiet, Julien Duc, Nathalie Brandenberg, F Gisou van der Goot
{"title":"损伤诱导的肠道干细胞更新需要毛细血管形态发生基因2。","authors":"Lucie Bracq, Audrey Chuat, Béatrice Kunz, Olivier Burri, Romain Guiet, Julien Duc, Nathalie Brandenberg, F Gisou van der Goot","doi":"10.1038/s44321-025-00295-3","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with the rare genetic disorder Hyaline Fibromatosis Syndrome (HFS) often succumb before 18 months of age due to severe diarrhea. As HFS is caused by loss-of-function mutations in the gene encoding capillary morphogenesis gene 2 (CMG2), these symptoms highlight a critical yet unexplored role for CMG2 in the gut. Here, we demonstrate that CMG2 knockout mice exhibit normal colon morphology and no signs of inflammation until the chemical induction of colitis. In these conditions, the colons of knockout mice do not regenerate despite previously experiencing similarly severe colitis, due to an inability to replenish their intestinal stem cell pool. Specifically, CMG2 knockout impairs the transition from fetal-like to Lgr5+ adult stem cells, which is associated with a defect in ß-catenin nuclear translocation. Based on our findings, we propose that CMG2 functions as a context-specific modulator of Wnt signaling, essential for replenishing the pool of intestinal stem cells following injury. This study provides new insights into the molecular mechanisms underlying lethal diarrhea in HFS and offers a broader understanding of fetal-like regenerative responses.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"2612-2631"},"PeriodicalIF":8.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12514029/pdf/","citationCount":"0","resultStr":"{\"title\":\"Injury-induced intestinal stem cell renewal requires capillary morphogenesis gene 2.\",\"authors\":\"Lucie Bracq, Audrey Chuat, Béatrice Kunz, Olivier Burri, Romain Guiet, Julien Duc, Nathalie Brandenberg, F Gisou van der Goot\",\"doi\":\"10.1038/s44321-025-00295-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patients with the rare genetic disorder Hyaline Fibromatosis Syndrome (HFS) often succumb before 18 months of age due to severe diarrhea. As HFS is caused by loss-of-function mutations in the gene encoding capillary morphogenesis gene 2 (CMG2), these symptoms highlight a critical yet unexplored role for CMG2 in the gut. Here, we demonstrate that CMG2 knockout mice exhibit normal colon morphology and no signs of inflammation until the chemical induction of colitis. In these conditions, the colons of knockout mice do not regenerate despite previously experiencing similarly severe colitis, due to an inability to replenish their intestinal stem cell pool. Specifically, CMG2 knockout impairs the transition from fetal-like to Lgr5+ adult stem cells, which is associated with a defect in ß-catenin nuclear translocation. Based on our findings, we propose that CMG2 functions as a context-specific modulator of Wnt signaling, essential for replenishing the pool of intestinal stem cells following injury. This study provides new insights into the molecular mechanisms underlying lethal diarrhea in HFS and offers a broader understanding of fetal-like regenerative responses.</p>\",\"PeriodicalId\":11597,\"journal\":{\"name\":\"EMBO Molecular Medicine\",\"volume\":\" \",\"pages\":\"2612-2631\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12514029/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s44321-025-00295-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00295-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Patients with the rare genetic disorder Hyaline Fibromatosis Syndrome (HFS) often succumb before 18 months of age due to severe diarrhea. As HFS is caused by loss-of-function mutations in the gene encoding capillary morphogenesis gene 2 (CMG2), these symptoms highlight a critical yet unexplored role for CMG2 in the gut. Here, we demonstrate that CMG2 knockout mice exhibit normal colon morphology and no signs of inflammation until the chemical induction of colitis. In these conditions, the colons of knockout mice do not regenerate despite previously experiencing similarly severe colitis, due to an inability to replenish their intestinal stem cell pool. Specifically, CMG2 knockout impairs the transition from fetal-like to Lgr5+ adult stem cells, which is associated with a defect in ß-catenin nuclear translocation. Based on our findings, we propose that CMG2 functions as a context-specific modulator of Wnt signaling, essential for replenishing the pool of intestinal stem cells following injury. This study provides new insights into the molecular mechanisms underlying lethal diarrhea in HFS and offers a broader understanding of fetal-like regenerative responses.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)