kif11 -单倍不足的卵母细胞揭示了染色体双向性的空间差异需求。

IF 6.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
EMBO Reports Pub Date : 2025-09-01 Epub Date: 2025-08-20 DOI:10.1038/s44319-025-00539-w
Tappei Mishina, Aurélien Courtois, Shuhei Yoshida, Kohei Asai, Hiroshi Kiyonari, Tomoya S Kitajima
{"title":"kif11 -单倍不足的卵母细胞揭示了染色体双向性的空间差异需求。","authors":"Tappei Mishina, Aurélien Courtois, Shuhei Yoshida, Kohei Asai, Hiroshi Kiyonari, Tomoya S Kitajima","doi":"10.1038/s44319-025-00539-w","DOIUrl":null,"url":null,"abstract":"<p><p>Bipolar spindle assembly and chromosome biorientation are prerequisites for chromosome segregation during cell division. The kinesin motor KIF11 (also widely known as Eg5) drives spindle bipolarization by sliding antiparallel microtubules bidirectionally, elongating a spherical spindle into a bipolar-shaped structure in acentrosomal oocytes. During meiosis I, this process stretches homologous chromosome pairs, establishing chromosome biorientation at the spindle equator. The quantitative requirement for KIF11 in acentrosomal spindle bipolarization and homologous chromosome biorientation remains unclear. Here, using a genetic strategy to modulate KIF11 expression levels, we show that Kif11 haploinsufficiency impairs spindle elongation, leading to the formation of a partially bipolarized spindle during meiosis I in mouse oocytes. While the partially bipolarized spindle allows chromosome stretching in the inner region of its equator, it fails to do so in the outer region, where merotelic kinetochore-microtubule attachments are favored to form. These findings demonstrate the necessity of biallelic functional Kif11 for bipolar spindle assembly in acentrosomal oocytes and reveal a spatially differential requirement for homologous chromosome biorientation within the spindle.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"4419-4435"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12457643/pdf/","citationCount":"0","resultStr":"{\"title\":\"Kif11-haploinsufficient oocytes reveal spatially differential requirements for chromosome biorientation.\",\"authors\":\"Tappei Mishina, Aurélien Courtois, Shuhei Yoshida, Kohei Asai, Hiroshi Kiyonari, Tomoya S Kitajima\",\"doi\":\"10.1038/s44319-025-00539-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bipolar spindle assembly and chromosome biorientation are prerequisites for chromosome segregation during cell division. The kinesin motor KIF11 (also widely known as Eg5) drives spindle bipolarization by sliding antiparallel microtubules bidirectionally, elongating a spherical spindle into a bipolar-shaped structure in acentrosomal oocytes. During meiosis I, this process stretches homologous chromosome pairs, establishing chromosome biorientation at the spindle equator. The quantitative requirement for KIF11 in acentrosomal spindle bipolarization and homologous chromosome biorientation remains unclear. Here, using a genetic strategy to modulate KIF11 expression levels, we show that Kif11 haploinsufficiency impairs spindle elongation, leading to the formation of a partially bipolarized spindle during meiosis I in mouse oocytes. While the partially bipolarized spindle allows chromosome stretching in the inner region of its equator, it fails to do so in the outer region, where merotelic kinetochore-microtubule attachments are favored to form. These findings demonstrate the necessity of biallelic functional Kif11 for bipolar spindle assembly in acentrosomal oocytes and reveal a spatially differential requirement for homologous chromosome biorientation within the spindle.</p>\",\"PeriodicalId\":11541,\"journal\":{\"name\":\"EMBO Reports\",\"volume\":\" \",\"pages\":\"4419-4435\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12457643/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44319-025-00539-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00539-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

双极性纺锤体装配和染色体双取向是细胞分裂过程中染色体分离的先决条件。在无丝胞体卵母细胞中,驱动蛋白马达KIF11(也被广泛称为Eg5)通过双向滑动反平行微管驱动纺锤体双极化,将球形纺锤体拉长成双极性结构。在减数分裂I中,这一过程延伸同源染色体对,在纺锤体赤道处建立染色体双向性。KIF11在无丝胞体纺锤体双极化和同源染色体双取向中的定量要求尚不清楚。在这里,我们使用一种遗传策略来调节KIF11表达水平,我们发现KIF11单倍不足会损害纺锤体伸长,导致小鼠卵母细胞减数分裂I期间部分双极化纺锤体的形成。虽然部分双极化纺锤体允许染色体在其赤道的内部区域拉伸,但在外围区域却不能这样做,而在外围区域,分裂的着丝点-微管附着物更容易形成。这些发现证明了双等位基因功能性Kif11对无丝胞体卵母细胞双极性纺锤体组装的必要性,并揭示了纺锤体内同源染色体双取向的空间差异需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kif11-haploinsufficient oocytes reveal spatially differential requirements for chromosome biorientation.

Bipolar spindle assembly and chromosome biorientation are prerequisites for chromosome segregation during cell division. The kinesin motor KIF11 (also widely known as Eg5) drives spindle bipolarization by sliding antiparallel microtubules bidirectionally, elongating a spherical spindle into a bipolar-shaped structure in acentrosomal oocytes. During meiosis I, this process stretches homologous chromosome pairs, establishing chromosome biorientation at the spindle equator. The quantitative requirement for KIF11 in acentrosomal spindle bipolarization and homologous chromosome biorientation remains unclear. Here, using a genetic strategy to modulate KIF11 expression levels, we show that Kif11 haploinsufficiency impairs spindle elongation, leading to the formation of a partially bipolarized spindle during meiosis I in mouse oocytes. While the partially bipolarized spindle allows chromosome stretching in the inner region of its equator, it fails to do so in the outer region, where merotelic kinetochore-microtubule attachments are favored to form. These findings demonstrate the necessity of biallelic functional Kif11 for bipolar spindle assembly in acentrosomal oocytes and reveal a spatially differential requirement for homologous chromosome biorientation within the spindle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信