Tak Shun Fung, Amrapali Ghosh, Maite R Zavala, Zuzana Nichtova, Dhavalkumar Shukal, Marco Tigano, Gyorgy Csordas, Henry N Higgs, Rajarshi Chakrabarti
{"title":"线粒体周围肌动蛋白丝通过破坏er -线粒体接触抑制Parkin组装。","authors":"Tak Shun Fung, Amrapali Ghosh, Maite R Zavala, Zuzana Nichtova, Dhavalkumar Shukal, Marco Tigano, Gyorgy Csordas, Henry N Higgs, Rajarshi Chakrabarti","doi":"10.1038/s44319-025-00561-y","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial damage represents a dramatic change in cellular homeostasis, necessitating metabolic adaptation and clearance of the damaged organelle. One rapid response to mitochondrial damage is peri-mitochondrial actin polymerization within 2 min, which we term ADA (Acute Damage-induced Actin). ADA is vital for a metabolic shift from oxidative phosphorylation to glycolysis upon mitochondrial dysfunction. In the current study, we investigated the effect of ADA on Pink1/Parkin mediated mitochondrial quality control. We show that inhibition of proteins involved in the ADA pathway significantly accelerates Parkin recruitment onto depolarized mitochondria. Addressing the mechanism by which ADA resists Parkin recruitment onto depolarized mitochondria, we found that ADA disrupts ER-mitochondria contacts in an Arp2/3 complex-dependent manner. Interestingly, overexpression of ER-mitochondria tethers overrides the effect of ADA, allowing rapid recruitment of not only Parkin but also LC3 after mitochondrial depolarization. During chronic mitochondrial dysfunction, Parkin and LC3 recruitment are completely blocked, which is reversed rapidly by inhibiting ADA. Taken together we show that ADA acts as a protective mechanism, delaying mitophagy following acute damage, and blocking mitophagy during chronic mitochondrial damage.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peri-mitochondrial actin filaments inhibit Parkin assembly by disrupting ER-mitochondria contacts.\",\"authors\":\"Tak Shun Fung, Amrapali Ghosh, Maite R Zavala, Zuzana Nichtova, Dhavalkumar Shukal, Marco Tigano, Gyorgy Csordas, Henry N Higgs, Rajarshi Chakrabarti\",\"doi\":\"10.1038/s44319-025-00561-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial damage represents a dramatic change in cellular homeostasis, necessitating metabolic adaptation and clearance of the damaged organelle. One rapid response to mitochondrial damage is peri-mitochondrial actin polymerization within 2 min, which we term ADA (Acute Damage-induced Actin). ADA is vital for a metabolic shift from oxidative phosphorylation to glycolysis upon mitochondrial dysfunction. In the current study, we investigated the effect of ADA on Pink1/Parkin mediated mitochondrial quality control. We show that inhibition of proteins involved in the ADA pathway significantly accelerates Parkin recruitment onto depolarized mitochondria. Addressing the mechanism by which ADA resists Parkin recruitment onto depolarized mitochondria, we found that ADA disrupts ER-mitochondria contacts in an Arp2/3 complex-dependent manner. Interestingly, overexpression of ER-mitochondria tethers overrides the effect of ADA, allowing rapid recruitment of not only Parkin but also LC3 after mitochondrial depolarization. During chronic mitochondrial dysfunction, Parkin and LC3 recruitment are completely blocked, which is reversed rapidly by inhibiting ADA. Taken together we show that ADA acts as a protective mechanism, delaying mitophagy following acute damage, and blocking mitophagy during chronic mitochondrial damage.</p>\",\"PeriodicalId\":11541,\"journal\":{\"name\":\"EMBO Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44319-025-00561-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00561-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Peri-mitochondrial actin filaments inhibit Parkin assembly by disrupting ER-mitochondria contacts.
Mitochondrial damage represents a dramatic change in cellular homeostasis, necessitating metabolic adaptation and clearance of the damaged organelle. One rapid response to mitochondrial damage is peri-mitochondrial actin polymerization within 2 min, which we term ADA (Acute Damage-induced Actin). ADA is vital for a metabolic shift from oxidative phosphorylation to glycolysis upon mitochondrial dysfunction. In the current study, we investigated the effect of ADA on Pink1/Parkin mediated mitochondrial quality control. We show that inhibition of proteins involved in the ADA pathway significantly accelerates Parkin recruitment onto depolarized mitochondria. Addressing the mechanism by which ADA resists Parkin recruitment onto depolarized mitochondria, we found that ADA disrupts ER-mitochondria contacts in an Arp2/3 complex-dependent manner. Interestingly, overexpression of ER-mitochondria tethers overrides the effect of ADA, allowing rapid recruitment of not only Parkin but also LC3 after mitochondrial depolarization. During chronic mitochondrial dysfunction, Parkin and LC3 recruitment are completely blocked, which is reversed rapidly by inhibiting ADA. Taken together we show that ADA acts as a protective mechanism, delaying mitophagy following acute damage, and blocking mitophagy during chronic mitochondrial damage.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.