Altaf Osman Mulani, Minal Deshmukh, Vaishali Jadhav, Kalyani Chaudhari, Ammu Anna Mathew, Shweta Salunkhe
{"title":"用深度学习改变药物治疗:个性化医疗的未来。","authors":"Altaf Osman Mulani, Minal Deshmukh, Vaishali Jadhav, Kalyani Chaudhari, Ammu Anna Mathew, Shweta Salunkhe","doi":"10.1055/a-2682-5167","DOIUrl":null,"url":null,"abstract":"<p><p>Personalized medicine represents a paradigm shift in healthcare, aiming to tailor treatment strategies to the unique genetic, environmental, and lifestyle characteristics of individual patients. This approach holds immense potential for improving therapeutic efficacy and minimizing adverse drug reactions. With the rapid advancement of artificial intelligence, deep learning has emerged as a transformative tool in pharmacology, enabling precise modeling of complex biological data and uncovering hidden patterns in patient-specific information. This study investigates the application of deep learning techniques - such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Transformer architectures, and Generative Adversarial Networks (GANs) - in optimizing personalized treatment strategies. Using a diverse dataset comprising electronic health records (EHRs), genomic sequences, and clinical indicators, we developed and trained deep learning models for tasks including drug response prediction, biomarker identification, and adverse drug reaction (ADR) forecasting. Among the models evaluated, Transformer-based architectures demonstrated superior performance, achieving an accuracy of 91.2% and an AUC-ROC of 0.92 in drug response prediction tasks. Moreover, the integration of deep learning models into the treatment pipeline resulted in a 20-30% improvement in drug-patient matching efficiency compared to traditional statistical methods. The findings underscore the potential of AI-powered systems to enhance clinical decision-making and enable precision pharmacotherapy. However, challenges such as data privacy, model interpretability, and regulatory compliance remain critical barriers to widespread adoption. The study also explores future directions, including the implementation of explainable AI (XAI) and federated learning, to address these limitations and facilitate the integration of deep learning into routine clinical practice.</p>","PeriodicalId":11451,"journal":{"name":"Drug Research","volume":" ","pages":"326-333"},"PeriodicalIF":2.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine.\",\"authors\":\"Altaf Osman Mulani, Minal Deshmukh, Vaishali Jadhav, Kalyani Chaudhari, Ammu Anna Mathew, Shweta Salunkhe\",\"doi\":\"10.1055/a-2682-5167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Personalized medicine represents a paradigm shift in healthcare, aiming to tailor treatment strategies to the unique genetic, environmental, and lifestyle characteristics of individual patients. This approach holds immense potential for improving therapeutic efficacy and minimizing adverse drug reactions. With the rapid advancement of artificial intelligence, deep learning has emerged as a transformative tool in pharmacology, enabling precise modeling of complex biological data and uncovering hidden patterns in patient-specific information. This study investigates the application of deep learning techniques - such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Transformer architectures, and Generative Adversarial Networks (GANs) - in optimizing personalized treatment strategies. Using a diverse dataset comprising electronic health records (EHRs), genomic sequences, and clinical indicators, we developed and trained deep learning models for tasks including drug response prediction, biomarker identification, and adverse drug reaction (ADR) forecasting. Among the models evaluated, Transformer-based architectures demonstrated superior performance, achieving an accuracy of 91.2% and an AUC-ROC of 0.92 in drug response prediction tasks. Moreover, the integration of deep learning models into the treatment pipeline resulted in a 20-30% improvement in drug-patient matching efficiency compared to traditional statistical methods. The findings underscore the potential of AI-powered systems to enhance clinical decision-making and enable precision pharmacotherapy. However, challenges such as data privacy, model interpretability, and regulatory compliance remain critical barriers to widespread adoption. The study also explores future directions, including the implementation of explainable AI (XAI) and federated learning, to address these limitations and facilitate the integration of deep learning into routine clinical practice.</p>\",\"PeriodicalId\":11451,\"journal\":{\"name\":\"Drug Research\",\"volume\":\" \",\"pages\":\"326-333\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2682-5167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2682-5167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine.
Personalized medicine represents a paradigm shift in healthcare, aiming to tailor treatment strategies to the unique genetic, environmental, and lifestyle characteristics of individual patients. This approach holds immense potential for improving therapeutic efficacy and minimizing adverse drug reactions. With the rapid advancement of artificial intelligence, deep learning has emerged as a transformative tool in pharmacology, enabling precise modeling of complex biological data and uncovering hidden patterns in patient-specific information. This study investigates the application of deep learning techniques - such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Transformer architectures, and Generative Adversarial Networks (GANs) - in optimizing personalized treatment strategies. Using a diverse dataset comprising electronic health records (EHRs), genomic sequences, and clinical indicators, we developed and trained deep learning models for tasks including drug response prediction, biomarker identification, and adverse drug reaction (ADR) forecasting. Among the models evaluated, Transformer-based architectures demonstrated superior performance, achieving an accuracy of 91.2% and an AUC-ROC of 0.92 in drug response prediction tasks. Moreover, the integration of deep learning models into the treatment pipeline resulted in a 20-30% improvement in drug-patient matching efficiency compared to traditional statistical methods. The findings underscore the potential of AI-powered systems to enhance clinical decision-making and enable precision pharmacotherapy. However, challenges such as data privacy, model interpretability, and regulatory compliance remain critical barriers to widespread adoption. The study also explores future directions, including the implementation of explainable AI (XAI) and federated learning, to address these limitations and facilitate the integration of deep learning into routine clinical practice.
期刊介绍:
Drug Research (formerly Arzneimittelforschung) is an international peer-reviewed journal with expedited processing times presenting the very latest research results related to novel and established drug molecules and the evaluation of new drug development. A key focus of the publication is translational medicine and the application of biological discoveries in the development of drugs for use in the clinical environment. Articles and experimental data from across the field of drug research address not only the issue of drug discovery, but also the mathematical and statistical methods for evaluating results from industrial investigations and clinical trials. Publishing twelve times a year, Drug Research includes original research articles as well as reviews, commentaries and short communications in the following areas: analytics applied to clinical trials chemistry and biochemistry clinical and experimental pharmacology drug interactions efficacy testing pharmacodynamics pharmacokinetics teratology toxicology.