以树状表示的糖尿病和疾病进展的异质性:来自中国心脏代谢疾病和癌症队列(4C)研究的发现

IF 10.2 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Xiaojing Jia, Shuangyuan Wang, Hong Lin, Yuanyue Zhu, Yilan Ding, Mian Li, Yu Xu, Min Xu, Feiyue Huang, Feixia Shen, Xuejiang Gu, Yiming Mu, Lulu Chen, Tianshu Zeng, Lixin Shi, Qing Su, Xuefeng Yu, Li Yan, Guijun Qin, Qin Wan, Gang Chen, Xulei Tang, Zhengnan Gao, Ruying Hu, Zuojie Luo, Yingfen Qin, Li Chen, Xinguo Hou, Yanan Huo, Qiang Li, Guixia Wang, Yinfei Zhang, Chao Liu, Youmin Wang, Shengli Wu, Tao Yang, Huacong Deng, Yifang Zhang, Huapeng Wei, Jie Zheng, Tiange Wang, Zhiyun Zhao, Jiajun Zhao, Guang Ning, Weiqing Wang, Yufang Bi, Jieli Lu
{"title":"以树状表示的糖尿病和疾病进展的异质性:来自中国心脏代谢疾病和癌症队列(4C)研究的发现","authors":"Xiaojing Jia, Shuangyuan Wang, Hong Lin, Yuanyue Zhu, Yilan Ding, Mian Li, Yu Xu, Min Xu, Feiyue Huang, Feixia Shen, Xuejiang Gu, Yiming Mu, Lulu Chen, Tianshu Zeng, Lixin Shi, Qing Su, Xuefeng Yu, Li Yan, Guijun Qin, Qin Wan, Gang Chen, Xulei Tang, Zhengnan Gao, Ruying Hu, Zuojie Luo, Yingfen Qin, Li Chen, Xinguo Hou, Yanan Huo, Qiang Li, Guixia Wang, Yinfei Zhang, Chao Liu, Youmin Wang, Shengli Wu, Tao Yang, Huacong Deng, Yifang Zhang, Huapeng Wei, Jie Zheng, Tiange Wang, Zhiyun Zhao, Jiajun Zhao, Guang Ning, Weiqing Wang, Yufang Bi, Jieli Lu","doi":"10.1007/s00125-025-06528-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims/hypothesis: </strong>Diabetes heterogeneity has been modelled as a continuum in European populations, but its phenotypes and long-term comorbidity risks remain unclear in Chinese individuals. This study aimed to identify distinct phenotypes and evaluate their links to future cardiometabolic risks in a large Chinese cohort.</p><p><strong>Methods: </strong>The discriminative dimensionality reduction with trees (DDRTree) algorithm was used to develop a tree structure based on nine clinical variables. Cox proportional hazard models or logistic regression models were used to analyse probabilities of diabetes-related outcomes.</p><p><strong>Results: </strong>This study included 19,612 individuals with newly diagnosed diabetes (36.8% male, mean age 59.01 years [SD 8.63]) from the China Cardiometabolic Disease and Cancer Cohort (4C) study. All nine clinical variables used for establishing DDRTree models were gradient distributed across the tree. By overlaying risks of diabetes-related outcomes, we show how these risks differ by participant phenotype. Participants characterised by hyperglycaemia, obesity and dyslipidaemia showed elevated risks of insulin initiation, hypoglycaemia and chronic kidney diseases, while those with hypertension and high creatinine, total cholesterol and alanine aminotransferase levels were associated with a higher risk of CVD. Notably, social determinants and lifestyle factors further contributed to the observed heterogeneity.</p><p><strong>Conclusions/interpretation: </strong>These findings characterise the heterogeneity of diabetes phenotypes and complication risks in the Chinese population, suggesting potential implications for personalised diabetes care. Given the observed phenotypic differences, management strategies should consider population-specific characteristics.</p>","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":" ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneity of diabetes and disease progression with a tree-like representation: findings from the China Cardiometabolic Disease and Cancer Cohort (4C) study.\",\"authors\":\"Xiaojing Jia, Shuangyuan Wang, Hong Lin, Yuanyue Zhu, Yilan Ding, Mian Li, Yu Xu, Min Xu, Feiyue Huang, Feixia Shen, Xuejiang Gu, Yiming Mu, Lulu Chen, Tianshu Zeng, Lixin Shi, Qing Su, Xuefeng Yu, Li Yan, Guijun Qin, Qin Wan, Gang Chen, Xulei Tang, Zhengnan Gao, Ruying Hu, Zuojie Luo, Yingfen Qin, Li Chen, Xinguo Hou, Yanan Huo, Qiang Li, Guixia Wang, Yinfei Zhang, Chao Liu, Youmin Wang, Shengli Wu, Tao Yang, Huacong Deng, Yifang Zhang, Huapeng Wei, Jie Zheng, Tiange Wang, Zhiyun Zhao, Jiajun Zhao, Guang Ning, Weiqing Wang, Yufang Bi, Jieli Lu\",\"doi\":\"10.1007/s00125-025-06528-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims/hypothesis: </strong>Diabetes heterogeneity has been modelled as a continuum in European populations, but its phenotypes and long-term comorbidity risks remain unclear in Chinese individuals. This study aimed to identify distinct phenotypes and evaluate their links to future cardiometabolic risks in a large Chinese cohort.</p><p><strong>Methods: </strong>The discriminative dimensionality reduction with trees (DDRTree) algorithm was used to develop a tree structure based on nine clinical variables. Cox proportional hazard models or logistic regression models were used to analyse probabilities of diabetes-related outcomes.</p><p><strong>Results: </strong>This study included 19,612 individuals with newly diagnosed diabetes (36.8% male, mean age 59.01 years [SD 8.63]) from the China Cardiometabolic Disease and Cancer Cohort (4C) study. All nine clinical variables used for establishing DDRTree models were gradient distributed across the tree. By overlaying risks of diabetes-related outcomes, we show how these risks differ by participant phenotype. Participants characterised by hyperglycaemia, obesity and dyslipidaemia showed elevated risks of insulin initiation, hypoglycaemia and chronic kidney diseases, while those with hypertension and high creatinine, total cholesterol and alanine aminotransferase levels were associated with a higher risk of CVD. Notably, social determinants and lifestyle factors further contributed to the observed heterogeneity.</p><p><strong>Conclusions/interpretation: </strong>These findings characterise the heterogeneity of diabetes phenotypes and complication risks in the Chinese population, suggesting potential implications for personalised diabetes care. Given the observed phenotypic differences, management strategies should consider population-specific characteristics.</p>\",\"PeriodicalId\":11164,\"journal\":{\"name\":\"Diabetologia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00125-025-06528-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00125-025-06528-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的/假设:糖尿病异质性在欧洲人群中被建模为连续体,但其在中国个体中的表型和长期合并症风险仍不清楚。本研究旨在在一个大型中国队列中确定不同的表型并评估它们与未来心脏代谢风险的联系。方法:采用判别降维树(DDRTree)算法建立基于9个临床变量的树状结构。采用Cox比例风险模型或logistic回归模型分析糖尿病相关结局的概率。结果:本研究纳入了来自中国心血管代谢疾病和癌症队列(4C)研究的19612例新诊断糖尿病患者(36.8%为男性,平均年龄59.01岁[SD 8.63])。用于建立DDRTree模型的9个临床变量均呈梯度分布。通过叠加糖尿病相关结果的风险,我们展示了这些风险如何因参与者表型而不同。以高血糖、肥胖和血脂异常为特征的参与者表现出胰岛素启动、低血糖和慢性肾脏疾病的高风险,而高血压、高肌酐、总胆固醇和丙氨酸转氨酶水平的参与者则与心血管疾病的高风险相关。值得注意的是,社会决定因素和生活方式因素进一步导致了观察到的异质性。结论/解释:这些发现表征了中国人群中糖尿病表型和并发症风险的异质性,提示了个性化糖尿病护理的潜在意义。鉴于观察到的表型差异,管理策略应考虑群体特异性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneity of diabetes and disease progression with a tree-like representation: findings from the China Cardiometabolic Disease and Cancer Cohort (4C) study.

Aims/hypothesis: Diabetes heterogeneity has been modelled as a continuum in European populations, but its phenotypes and long-term comorbidity risks remain unclear in Chinese individuals. This study aimed to identify distinct phenotypes and evaluate their links to future cardiometabolic risks in a large Chinese cohort.

Methods: The discriminative dimensionality reduction with trees (DDRTree) algorithm was used to develop a tree structure based on nine clinical variables. Cox proportional hazard models or logistic regression models were used to analyse probabilities of diabetes-related outcomes.

Results: This study included 19,612 individuals with newly diagnosed diabetes (36.8% male, mean age 59.01 years [SD 8.63]) from the China Cardiometabolic Disease and Cancer Cohort (4C) study. All nine clinical variables used for establishing DDRTree models were gradient distributed across the tree. By overlaying risks of diabetes-related outcomes, we show how these risks differ by participant phenotype. Participants characterised by hyperglycaemia, obesity and dyslipidaemia showed elevated risks of insulin initiation, hypoglycaemia and chronic kidney diseases, while those with hypertension and high creatinine, total cholesterol and alanine aminotransferase levels were associated with a higher risk of CVD. Notably, social determinants and lifestyle factors further contributed to the observed heterogeneity.

Conclusions/interpretation: These findings characterise the heterogeneity of diabetes phenotypes and complication risks in the Chinese population, suggesting potential implications for personalised diabetes care. Given the observed phenotypic differences, management strategies should consider population-specific characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetologia
Diabetologia 医学-内分泌学与代谢
CiteScore
18.10
自引率
2.40%
发文量
193
审稿时长
1 months
期刊介绍: Diabetologia, the authoritative journal dedicated to diabetes research, holds high visibility through society membership, libraries, and social media. As the official journal of the European Association for the Study of Diabetes, it is ranked in the top quartile of the 2019 JCR Impact Factors in the Endocrinology & Metabolism category. The journal boasts dedicated and expert editorial teams committed to supporting authors throughout the peer review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信