CytoNormPy能够快速和可扩展地去除细胞计数数据集中的批处理效果。

IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Tarik Exner, Nicolaj Hackert, Luca Leomazzi, Sofie Van Gassen, Yvan Saeys, Hanns-Martin Lorenz, Ricardo Grieshaber-Bouyer
{"title":"CytoNormPy能够快速和可扩展地去除细胞计数数据集中的批处理效果。","authors":"Tarik Exner,&nbsp;Nicolaj Hackert,&nbsp;Luca Leomazzi,&nbsp;Sofie Van Gassen,&nbsp;Yvan Saeys,&nbsp;Hanns-Martin Lorenz,&nbsp;Ricardo Grieshaber-Bouyer","doi":"10.1002/cyto.a.24953","DOIUrl":null,"url":null,"abstract":"<p>Cytometry has evolved as a crucial technique in clinical diagnostics, clinical studies, and research. However, batch effects due to technical variation complicate the analysis of cytometry data in clinical and fundamental research settings and have to be accounted for. Here, we present a Python implementation of the widely used CytoNorm algorithm for the removal of batch effects, implementing the complete feature set of the recently published CytoNorm 2.0. Our implementation ran up to 85% faster than its R counterpart while being fully compatible with common single-cell data structures and frameworks of Python. We extend the previous functionality by adding common clustering algorithms and provide key visualizations of the algorithm and its evaluation. The CytoNormPy implementation is freely available on GitHub: https://github.com/TarikExner/CytoNormPy.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"107 9","pages":"629-635"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24953","citationCount":"0","resultStr":"{\"title\":\"CytoNormPy Enables a Fast and Scalable Removal of Batch Effects in Cytometry Datasets\",\"authors\":\"Tarik Exner,&nbsp;Nicolaj Hackert,&nbsp;Luca Leomazzi,&nbsp;Sofie Van Gassen,&nbsp;Yvan Saeys,&nbsp;Hanns-Martin Lorenz,&nbsp;Ricardo Grieshaber-Bouyer\",\"doi\":\"10.1002/cyto.a.24953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cytometry has evolved as a crucial technique in clinical diagnostics, clinical studies, and research. However, batch effects due to technical variation complicate the analysis of cytometry data in clinical and fundamental research settings and have to be accounted for. Here, we present a Python implementation of the widely used CytoNorm algorithm for the removal of batch effects, implementing the complete feature set of the recently published CytoNorm 2.0. Our implementation ran up to 85% faster than its R counterpart while being fully compatible with common single-cell data structures and frameworks of Python. We extend the previous functionality by adding common clustering algorithms and provide key visualizations of the algorithm and its evaluation. The CytoNormPy implementation is freely available on GitHub: https://github.com/TarikExner/CytoNormPy.</p>\",\"PeriodicalId\":11068,\"journal\":{\"name\":\"Cytometry Part A\",\"volume\":\"107 9\",\"pages\":\"629-635\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24953\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part A\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24953\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24953","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

细胞术已经发展成为临床诊断、临床研究和研究的关键技术。然而,由于技术变化造成的批效应使临床和基础研究环境中细胞术数据的分析复杂化,必须加以考虑。在这里,我们提供了广泛使用的CytoNorm算法的Python实现,用于删除批处理效果,实现了最近发布的CytoNorm 2.0的完整功能集。我们的实现比R版本的运行速度快85%,同时完全兼容Python的常见单细胞数据结构和框架。我们通过添加常见的聚类算法扩展了之前的功能,并提供了算法及其评估的关键可视化。CytoNormPy实现可以在GitHub上免费获得:https://github.com/TarikExner/CytoNormPy。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CytoNormPy Enables a Fast and Scalable Removal of Batch Effects in Cytometry Datasets

CytoNormPy Enables a Fast and Scalable Removal of Batch Effects in Cytometry Datasets

Cytometry has evolved as a crucial technique in clinical diagnostics, clinical studies, and research. However, batch effects due to technical variation complicate the analysis of cytometry data in clinical and fundamental research settings and have to be accounted for. Here, we present a Python implementation of the widely used CytoNorm algorithm for the removal of batch effects, implementing the complete feature set of the recently published CytoNorm 2.0. Our implementation ran up to 85% faster than its R counterpart while being fully compatible with common single-cell data structures and frameworks of Python. We extend the previous functionality by adding common clustering algorithms and provide key visualizations of the algorithm and its evaluation. The CytoNormPy implementation is freely available on GitHub: https://github.com/TarikExner/CytoNormPy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytometry Part A
Cytometry Part A 生物-生化研究方法
CiteScore
8.10
自引率
13.50%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques. The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome: Biomedical Instrumentation Engineering Biophotonics Bioinformatics Cell Biology Computational Biology Data Science Immunology Parasitology Microbiology Neuroscience Cancer Stem Cells Tissue Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信