贝叶斯方法比较临床实践积累的生存数据与RCT数据:一个非小细胞肺癌患者的案例研究。

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Marjon V Verschueren, Daniel V Verschueren, Ewoudt M W van de Garde, Lourens T Bloem
{"title":"贝叶斯方法比较临床实践积累的生存数据与RCT数据:一个非小细胞肺癌患者的案例研究。","authors":"Marjon V Verschueren, Daniel V Verschueren, Ewoudt M W van de Garde, Lourens T Bloem","doi":"10.1002/psp4.70075","DOIUrl":null,"url":null,"abstract":"<p><p>Survival outcomes observed in randomized controlled trials (RCTs) may not always be generalizable to clinical practice. Evaluating whether treatment outcomes in clinical practice are similar to those in RCTs shortly after a new medicine is introduced is important for making informed decisions. Therefore, we aimed to develop a Bayesian model that compares survival data from clinical practice that accumulates over time with static survival data from RCTs, thereby providing rapid and easily interpretable results that can inform clinical and policy-related decision-making. We developed a Bayesian survival model that sequentially updates estimates as new data become available. We designed the model to incorporate static RCT data with accumulating clinical practice data. We used sequential hypothesis testing with Bayes factors to assess the strength of the evidence for different hazard ratio (HR) thresholds (i.e., ranging from HR > 1.0 to > 2.0 and HR < 0.5 to < 1.0). We applied the model to two datasets comprising survival data from clinical practice and an RCT for lung cancer patients treated with pembrolizumab plus chemotherapy (dataset 1) and pembrolizumab monotherapy (dataset 2). For dataset 1, the posterior model checks showed a misfit between the model and the data after 15 months, potentially due to channeling bias. The model fit should be improved before reliable estimates can be obtained. For dataset 2, the model estimated precise HRs 10 months before the end of data accumulation. Sequential hypothesis testing with Bayes factors provided easily interpretable results, with very strong evidence for an HR > 1.0 and strong evidence for an HR > 1.2. In conclusion, provided the posterior check shows an acceptable model fit, our Bayesian survival model with sequential hypothesis testing using Bayes factors can provide rapid and easily interpretable results for decision-making.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian Approach to Compare Accumulating Survival Data From Clinical Practice With RCT Data: A Case Study in Non-Small Cell Lung Cancer Patients.\",\"authors\":\"Marjon V Verschueren, Daniel V Verschueren, Ewoudt M W van de Garde, Lourens T Bloem\",\"doi\":\"10.1002/psp4.70075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Survival outcomes observed in randomized controlled trials (RCTs) may not always be generalizable to clinical practice. Evaluating whether treatment outcomes in clinical practice are similar to those in RCTs shortly after a new medicine is introduced is important for making informed decisions. Therefore, we aimed to develop a Bayesian model that compares survival data from clinical practice that accumulates over time with static survival data from RCTs, thereby providing rapid and easily interpretable results that can inform clinical and policy-related decision-making. We developed a Bayesian survival model that sequentially updates estimates as new data become available. We designed the model to incorporate static RCT data with accumulating clinical practice data. We used sequential hypothesis testing with Bayes factors to assess the strength of the evidence for different hazard ratio (HR) thresholds (i.e., ranging from HR > 1.0 to > 2.0 and HR < 0.5 to < 1.0). We applied the model to two datasets comprising survival data from clinical practice and an RCT for lung cancer patients treated with pembrolizumab plus chemotherapy (dataset 1) and pembrolizumab monotherapy (dataset 2). For dataset 1, the posterior model checks showed a misfit between the model and the data after 15 months, potentially due to channeling bias. The model fit should be improved before reliable estimates can be obtained. For dataset 2, the model estimated precise HRs 10 months before the end of data accumulation. Sequential hypothesis testing with Bayes factors provided easily interpretable results, with very strong evidence for an HR > 1.0 and strong evidence for an HR > 1.2. In conclusion, provided the posterior check shows an acceptable model fit, our Bayesian survival model with sequential hypothesis testing using Bayes factors can provide rapid and easily interpretable results for decision-making.</p>\",\"PeriodicalId\":10774,\"journal\":{\"name\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/psp4.70075\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.70075","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

随机对照试验(rct)中观察到的生存结果可能并不总是适用于临床实践。在引进一种新药后,评估临床实践中的治疗结果是否与随机对照试验中的相似,对于做出明智的决定非常重要。因此,我们旨在建立一个贝叶斯模型,将临床实践中积累的生存数据与随机对照试验中的静态生存数据进行比较,从而提供快速且易于解释的结果,为临床和政策相关决策提供信息。我们开发了一个贝叶斯生存模型,随着新数据的出现,它会依次更新估计。我们设计的模型结合了静态RCT数据和累积的临床实践数据。我们使用贝叶斯因子的序贯假设检验来评估不同风险比(HR)阈值的证据强度(即,从HR >.0到>.0和HR 1.0,以及HR >.2的强证据)。综上所述,如果后验检验显示模型拟合可接受,我们的贝叶斯生存模型使用贝叶斯因子进行序贯假设检验,可以为决策提供快速且易于解释的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Approach to Compare Accumulating Survival Data From Clinical Practice With RCT Data: A Case Study in Non-Small Cell Lung Cancer Patients.

Survival outcomes observed in randomized controlled trials (RCTs) may not always be generalizable to clinical practice. Evaluating whether treatment outcomes in clinical practice are similar to those in RCTs shortly after a new medicine is introduced is important for making informed decisions. Therefore, we aimed to develop a Bayesian model that compares survival data from clinical practice that accumulates over time with static survival data from RCTs, thereby providing rapid and easily interpretable results that can inform clinical and policy-related decision-making. We developed a Bayesian survival model that sequentially updates estimates as new data become available. We designed the model to incorporate static RCT data with accumulating clinical practice data. We used sequential hypothesis testing with Bayes factors to assess the strength of the evidence for different hazard ratio (HR) thresholds (i.e., ranging from HR > 1.0 to > 2.0 and HR < 0.5 to < 1.0). We applied the model to two datasets comprising survival data from clinical practice and an RCT for lung cancer patients treated with pembrolizumab plus chemotherapy (dataset 1) and pembrolizumab monotherapy (dataset 2). For dataset 1, the posterior model checks showed a misfit between the model and the data after 15 months, potentially due to channeling bias. The model fit should be improved before reliable estimates can be obtained. For dataset 2, the model estimated precise HRs 10 months before the end of data accumulation. Sequential hypothesis testing with Bayes factors provided easily interpretable results, with very strong evidence for an HR > 1.0 and strong evidence for an HR > 1.2. In conclusion, provided the posterior check shows an acceptable model fit, our Bayesian survival model with sequential hypothesis testing using Bayes factors can provide rapid and easily interpretable results for decision-making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信