从基因组和表型数据推断系统发育信息特征的四组方法。

IF 4.1 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Computational and structural biotechnology journal Pub Date : 2025-08-22 eCollection Date: 2025-01-01 DOI:10.1016/j.csbj.2025.08.015
Vivian B Brandenburg, Ben Luis Hack, Axel Mosig
{"title":"从基因组和表型数据推断系统发育信息特征的四组方法。","authors":"Vivian B Brandenburg, Ben Luis Hack, Axel Mosig","doi":"10.1016/j.csbj.2025.08.015","DOIUrl":null,"url":null,"abstract":"<p><p>Neural networks are widely used in bioinformatics to extract features from morphological, structural, and sequence data of different taxa. A key question is whether such features are compatible with a known phylogenetic tree describing the evolutionary relationships among the taxa. We address this question with a machine learning approach that takes taxon-specific data and a reference tree as input, and trains a neural network to produce a latent feature space whose pairwise distances are consistent with the tree topology. Our approach builds on the established role of quartets in distance-based phylogeny, leading to a quartet-based loss function for neural network training. In a proof-of-concept study using bacterial ribosomal RNA sequences, we show that the learned feature distances closely match the reference phylogeny. This framework can be applied to diverse biological data types, providing a principled way to incorporate phylogenetic constraints into neural network-based feature extraction.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3710-3718"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398925/pdf/","citationCount":"0","resultStr":"{\"title\":\"A quartet-based approach for inferring phylogenetically informative features from genomic and phenomic data.\",\"authors\":\"Vivian B Brandenburg, Ben Luis Hack, Axel Mosig\",\"doi\":\"10.1016/j.csbj.2025.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural networks are widely used in bioinformatics to extract features from morphological, structural, and sequence data of different taxa. A key question is whether such features are compatible with a known phylogenetic tree describing the evolutionary relationships among the taxa. We address this question with a machine learning approach that takes taxon-specific data and a reference tree as input, and trains a neural network to produce a latent feature space whose pairwise distances are consistent with the tree topology. Our approach builds on the established role of quartets in distance-based phylogeny, leading to a quartet-based loss function for neural network training. In a proof-of-concept study using bacterial ribosomal RNA sequences, we show that the learned feature distances closely match the reference phylogeny. This framework can be applied to diverse biological data types, providing a principled way to incorporate phylogenetic constraints into neural network-based feature extraction.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"3710-3718\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398925/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.08.015\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.08.015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经网络在生物信息学中广泛应用于从不同分类群的形态、结构和序列数据中提取特征。一个关键的问题是,这些特征是否与描述分类群之间进化关系的已知系统发育树相容。我们使用机器学习方法来解决这个问题,该方法将分类群特定数据和参考树作为输入,并训练神经网络来产生其成对距离与树拓扑一致的潜在特征空间。我们的方法建立在四重奏在基于距离的系统发育中的既定作用上,导致神经网络训练的基于四重奏的损失函数。在使用细菌核糖体RNA序列的概念验证研究中,我们表明学习到的特征距离与参考系统发育密切匹配。该框架可以应用于不同的生物数据类型,为将系统发育约束纳入基于神经网络的特征提取提供了一种原则性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quartet-based approach for inferring phylogenetically informative features from genomic and phenomic data.

Neural networks are widely used in bioinformatics to extract features from morphological, structural, and sequence data of different taxa. A key question is whether such features are compatible with a known phylogenetic tree describing the evolutionary relationships among the taxa. We address this question with a machine learning approach that takes taxon-specific data and a reference tree as input, and trains a neural network to produce a latent feature space whose pairwise distances are consistent with the tree topology. Our approach builds on the established role of quartets in distance-based phylogeny, leading to a quartet-based loss function for neural network training. In a proof-of-concept study using bacterial ribosomal RNA sequences, we show that the learned feature distances closely match the reference phylogeny. This framework can be applied to diverse biological data types, providing a principled way to incorporate phylogenetic constraints into neural network-based feature extraction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信