Mohammed A AboArab, Vassiliki T Potsika, Dimitrios S Pleouras, Dimitrios I Fotiadis
{"title":"外周动脉疾病中药物洗脱气球的计算建模:机制、优化和转化见解。","authors":"Mohammed A AboArab, Vassiliki T Potsika, Dimitrios S Pleouras, Dimitrios I Fotiadis","doi":"10.1016/j.csbj.2025.08.005","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-eluting balloons (DEBs) represent a promising alternative to stent-based interventions for peripheral artery disease (PAD), and their therapeutic efficacy is dependent on optimizing drug transfer, mechanical deployment, and vessel-wall interactions. This review synthesizes current advancements in computational modeling; systematically analyzes studies identified through comprehensive ScienceDirect, Scopus, and PubMed (2015-2025) searches; and selects them according to PRISMA guidelines. Key strategies, including computational fluid dynamics (CFD), finite element analysis (FEA), fluid-structure interaction (FSI), and machine learning (ML), are critically examined to elucidate how drug kinetics, coating stability, and mechanical stress govern therapeutic outcomes. CFD-based mass transfer models capture flow-driven drug dispersion and washout dynamics, whereas FEA links balloon mechanics, plaque morphology, and drug penetration efficiency. FSI frameworks provide insight into the coupled effects of wall deformation and hemodynamics, identifying high-risk regions of drug underdelivery. ML-driven surrogates and physics-informed neural networks (PINNs) enable real-time, patient-specific predictions with computational accelerations exceeding 600 × while maintaining less than 2 % deviation from high-fidelity solvers. Persistent challenges include anatomical simplifications, limited <i>in-vivo</i> validation, and insufficient integration of biological remodeling. Future directions emphasize hybrid <i>in-silico</i> pipelines integrating imaging-derived 3D geometries, multiscale simulations, and AI-driven pharmacokinetic modeling to establish clinically translatable digital twins for precision-guided DEB therapies in PAD.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3640-3653"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395082/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computational modeling of drug-eluting balloons in peripheral artery disease: Mechanisms, optimization, and translational insights.\",\"authors\":\"Mohammed A AboArab, Vassiliki T Potsika, Dimitrios S Pleouras, Dimitrios I Fotiadis\",\"doi\":\"10.1016/j.csbj.2025.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-eluting balloons (DEBs) represent a promising alternative to stent-based interventions for peripheral artery disease (PAD), and their therapeutic efficacy is dependent on optimizing drug transfer, mechanical deployment, and vessel-wall interactions. This review synthesizes current advancements in computational modeling; systematically analyzes studies identified through comprehensive ScienceDirect, Scopus, and PubMed (2015-2025) searches; and selects them according to PRISMA guidelines. Key strategies, including computational fluid dynamics (CFD), finite element analysis (FEA), fluid-structure interaction (FSI), and machine learning (ML), are critically examined to elucidate how drug kinetics, coating stability, and mechanical stress govern therapeutic outcomes. CFD-based mass transfer models capture flow-driven drug dispersion and washout dynamics, whereas FEA links balloon mechanics, plaque morphology, and drug penetration efficiency. FSI frameworks provide insight into the coupled effects of wall deformation and hemodynamics, identifying high-risk regions of drug underdelivery. ML-driven surrogates and physics-informed neural networks (PINNs) enable real-time, patient-specific predictions with computational accelerations exceeding 600 × while maintaining less than 2 % deviation from high-fidelity solvers. Persistent challenges include anatomical simplifications, limited <i>in-vivo</i> validation, and insufficient integration of biological remodeling. Future directions emphasize hybrid <i>in-silico</i> pipelines integrating imaging-derived 3D geometries, multiscale simulations, and AI-driven pharmacokinetic modeling to establish clinically translatable digital twins for precision-guided DEB therapies in PAD.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"3640-3653\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395082/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.08.005\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.08.005","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Computational modeling of drug-eluting balloons in peripheral artery disease: Mechanisms, optimization, and translational insights.
Drug-eluting balloons (DEBs) represent a promising alternative to stent-based interventions for peripheral artery disease (PAD), and their therapeutic efficacy is dependent on optimizing drug transfer, mechanical deployment, and vessel-wall interactions. This review synthesizes current advancements in computational modeling; systematically analyzes studies identified through comprehensive ScienceDirect, Scopus, and PubMed (2015-2025) searches; and selects them according to PRISMA guidelines. Key strategies, including computational fluid dynamics (CFD), finite element analysis (FEA), fluid-structure interaction (FSI), and machine learning (ML), are critically examined to elucidate how drug kinetics, coating stability, and mechanical stress govern therapeutic outcomes. CFD-based mass transfer models capture flow-driven drug dispersion and washout dynamics, whereas FEA links balloon mechanics, plaque morphology, and drug penetration efficiency. FSI frameworks provide insight into the coupled effects of wall deformation and hemodynamics, identifying high-risk regions of drug underdelivery. ML-driven surrogates and physics-informed neural networks (PINNs) enable real-time, patient-specific predictions with computational accelerations exceeding 600 × while maintaining less than 2 % deviation from high-fidelity solvers. Persistent challenges include anatomical simplifications, limited in-vivo validation, and insufficient integration of biological remodeling. Future directions emphasize hybrid in-silico pipelines integrating imaging-derived 3D geometries, multiscale simulations, and AI-driven pharmacokinetic modeling to establish clinically translatable digital twins for precision-guided DEB therapies in PAD.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology