{"title":"马尔可夫链蒙特卡罗多变量概率模型的可辨识性和收敛性。","authors":"Xiao Zhang","doi":"10.1080/03610926.2024.2425738","DOIUrl":null,"url":null,"abstract":"<p><p>Multivariate probit models have been popularly utilized to analysis multivariate ordinal data. However, the identifiable multivariate probit models entail the covariance matrix for the underlying multivariate normal variables to be a correlation matrix, which brings a rigorous task to conduct efficient statistical analysis. Parameter expansion to make the identifiable model to be non-identifiable has been inevitably explored. However, the effect of the expanded parameters on the convergence of Markov chain Monte Carlo (MCMC) is seldomly investigated; in addition, the comparison of MCMC developed based on the identifiable model and that based on the non-identifiable model is hardly ever explored, especially for data with large sample sizes. In this paper, we conduct a thorough investigation to illustrate the effect of the expanded parameters on the convergence of MCMC and compare the behavior of MCMC between the identifiable and non-identifiable models. Our investigation provides a practical guide regarding the construction of non-identifiable models and development of corresponding MCMC sampling methods. We conduct our investigation using simulation studies and present an application using data from the Russia Longitudinal Monitoring Survey-Higher School of Economics (RLMS-HSE) study.</p>","PeriodicalId":10531,"journal":{"name":"Communications in Statistics - Theory and Methods","volume":"54 14","pages":"4600-4615"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366764/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifiability and convergence behavior for Markov chain Monte Carlo using multivariate probit models.\",\"authors\":\"Xiao Zhang\",\"doi\":\"10.1080/03610926.2024.2425738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multivariate probit models have been popularly utilized to analysis multivariate ordinal data. However, the identifiable multivariate probit models entail the covariance matrix for the underlying multivariate normal variables to be a correlation matrix, which brings a rigorous task to conduct efficient statistical analysis. Parameter expansion to make the identifiable model to be non-identifiable has been inevitably explored. However, the effect of the expanded parameters on the convergence of Markov chain Monte Carlo (MCMC) is seldomly investigated; in addition, the comparison of MCMC developed based on the identifiable model and that based on the non-identifiable model is hardly ever explored, especially for data with large sample sizes. In this paper, we conduct a thorough investigation to illustrate the effect of the expanded parameters on the convergence of MCMC and compare the behavior of MCMC between the identifiable and non-identifiable models. Our investigation provides a practical guide regarding the construction of non-identifiable models and development of corresponding MCMC sampling methods. We conduct our investigation using simulation studies and present an application using data from the Russia Longitudinal Monitoring Survey-Higher School of Economics (RLMS-HSE) study.</p>\",\"PeriodicalId\":10531,\"journal\":{\"name\":\"Communications in Statistics - Theory and Methods\",\"volume\":\"54 14\",\"pages\":\"4600-4615\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366764/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics - Theory and Methods\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03610926.2024.2425738\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics - Theory and Methods","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03610926.2024.2425738","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Identifiability and convergence behavior for Markov chain Monte Carlo using multivariate probit models.
Multivariate probit models have been popularly utilized to analysis multivariate ordinal data. However, the identifiable multivariate probit models entail the covariance matrix for the underlying multivariate normal variables to be a correlation matrix, which brings a rigorous task to conduct efficient statistical analysis. Parameter expansion to make the identifiable model to be non-identifiable has been inevitably explored. However, the effect of the expanded parameters on the convergence of Markov chain Monte Carlo (MCMC) is seldomly investigated; in addition, the comparison of MCMC developed based on the identifiable model and that based on the non-identifiable model is hardly ever explored, especially for data with large sample sizes. In this paper, we conduct a thorough investigation to illustrate the effect of the expanded parameters on the convergence of MCMC and compare the behavior of MCMC between the identifiable and non-identifiable models. Our investigation provides a practical guide regarding the construction of non-identifiable models and development of corresponding MCMC sampling methods. We conduct our investigation using simulation studies and present an application using data from the Russia Longitudinal Monitoring Survey-Higher School of Economics (RLMS-HSE) study.
期刊介绍:
The Theory and Methods series intends to publish papers that make theoretical and methodological advances in Probability and Statistics. New applications of statistical and probabilistic methods will also be considered for publication. In addition, special issues dedicated to a specific topic of current interest will also be published in this series periodically, providing an exhaustive and up-to-date review of that topic to the readership.