{"title":"解开比率化学发光探针:pH调制,发光动力学和能量转移机制的理论见解。","authors":"Shuangqi Pi, Ya-Jun Liu","doi":"10.1002/cphc.202500437","DOIUrl":null,"url":null,"abstract":"<p><p>Maintaining a stable physiological pH is essential for the normal functioning of both whole organisms and individual cells. Ratiometric chemiluminescence probes have been widely employed to monitor pH in cells and living organisms due to their high sensitivity, resistance to external interferences, and noninvasiveness. In this study, the working mechanism of a specific ratiometric chemiluminescent probe, Ratio-pHCL-1, is investigated using (time-dependent) density functional theory. The mechanism can be divided into three stages. At first, pH influences the protonation state of Ratio-pHCL-1 in physiological pH range of 6.8-8.4. Subsequently, Ratio-pHCL-1 decomposes to generate the light emitter in the first excited state (S<sub>1</sub>) via a gradually reversible charge-transfer initiated luminescence mechanism. Finally, at higher pH values, the intramolecular energy transfer (ET) occurs, resulting in a redshift of the emission wavelength. The redshift of the emission wavelength effectively enhances the luminescence intensity and improves the imaging ability. While at lower pH values, the ET process does not occur. This is the first systematic study on the working mechanism of ratiometric chemiluminescent probes at the molecular and electronic-state levels. The findings can also be extended to understand the mechanism of a class of ratiometric chemiluminescent probes.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e2500437"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Ratiometric Chemiluminescence Probe: Theoretical Insights into pH Modulation, Luminescence Dynamics, and Energy Transfer Mechanisms.\",\"authors\":\"Shuangqi Pi, Ya-Jun Liu\",\"doi\":\"10.1002/cphc.202500437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maintaining a stable physiological pH is essential for the normal functioning of both whole organisms and individual cells. Ratiometric chemiluminescence probes have been widely employed to monitor pH in cells and living organisms due to their high sensitivity, resistance to external interferences, and noninvasiveness. In this study, the working mechanism of a specific ratiometric chemiluminescent probe, Ratio-pHCL-1, is investigated using (time-dependent) density functional theory. The mechanism can be divided into three stages. At first, pH influences the protonation state of Ratio-pHCL-1 in physiological pH range of 6.8-8.4. Subsequently, Ratio-pHCL-1 decomposes to generate the light emitter in the first excited state (S<sub>1</sub>) via a gradually reversible charge-transfer initiated luminescence mechanism. Finally, at higher pH values, the intramolecular energy transfer (ET) occurs, resulting in a redshift of the emission wavelength. The redshift of the emission wavelength effectively enhances the luminescence intensity and improves the imaging ability. While at lower pH values, the ET process does not occur. This is the first systematic study on the working mechanism of ratiometric chemiluminescent probes at the molecular and electronic-state levels. The findings can also be extended to understand the mechanism of a class of ratiometric chemiluminescent probes.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e2500437\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202500437\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500437","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Unraveling Ratiometric Chemiluminescence Probe: Theoretical Insights into pH Modulation, Luminescence Dynamics, and Energy Transfer Mechanisms.
Maintaining a stable physiological pH is essential for the normal functioning of both whole organisms and individual cells. Ratiometric chemiluminescence probes have been widely employed to monitor pH in cells and living organisms due to their high sensitivity, resistance to external interferences, and noninvasiveness. In this study, the working mechanism of a specific ratiometric chemiluminescent probe, Ratio-pHCL-1, is investigated using (time-dependent) density functional theory. The mechanism can be divided into three stages. At first, pH influences the protonation state of Ratio-pHCL-1 in physiological pH range of 6.8-8.4. Subsequently, Ratio-pHCL-1 decomposes to generate the light emitter in the first excited state (S1) via a gradually reversible charge-transfer initiated luminescence mechanism. Finally, at higher pH values, the intramolecular energy transfer (ET) occurs, resulting in a redshift of the emission wavelength. The redshift of the emission wavelength effectively enhances the luminescence intensity and improves the imaging ability. While at lower pH values, the ET process does not occur. This is the first systematic study on the working mechanism of ratiometric chemiluminescent probes at the molecular and electronic-state levels. The findings can also be extended to understand the mechanism of a class of ratiometric chemiluminescent probes.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.