Guo-Tian Ruan, Li-Chen Zhu, Hai-Lun Xie, He-Yang Zhang, Meng-Meng Song, Li Deng, Han-Ping Shi
{"title":"脂肪细胞源性IL6和三阴性乳腺癌细胞源性CXCL1共同激活STAT3/NF-κB通路,介导脂肪细胞与三阴性乳腺癌细胞间的串扰。","authors":"Guo-Tian Ruan, Li-Chen Zhu, Hai-Lun Xie, He-Yang Zhang, Meng-Meng Song, Li Deng, Han-Ping Shi","doi":"10.1038/s41420-025-02713-4","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is correlated to a poor prognosis, especially in the context of obesity. The interaction between adipocytes and TNBC cellsplay a key role in the progression of TNBC. This study aims to investigate the mechanisms underlying the cross-talk and progression between adipocytes and TNBC cells. We established a co-culture model involving mature adipose cells (hADSC and 3T3-L1) and TNBC cells. Cell invasion abilities were assessed using wound healing and Transwell assays. Gene and protein expression levels were examined using RT-PCR, western blotting, and immunostaining. Adipocytokine and chemokine levels were measured using ELISA. Additionally, we developed a fat mouse model induced by a high-fat diet and a tumor-bearing model of TNBC cells in vivo. The results indicated a significant enhancement in the invasion abilities of TNBC cells after co-culture. Mature adipose tissue co-cultured with TNBC cells increased the expression and secretion of C-X-C motif chemokine ligand 1 (CXCL1) and upregulated matrix metalloproteinase 7 (MMP7) and MMP9 in TNBC cells by activating the signal transducer and activator of transcription 3 (STAT3) /nuclear factor-κB p65 (NF-κB p65) pathway. Additionally, co-culture activated the STAT3/NF-κB p65 pathway, increasing the expression and secretion of IL6 in adipocytes. Based on the mouse obesity model, our experiments on orthotopic breast fat pad xenoimplantation showed consistent results in vivo. Our findings suggest a cross-talk between TNBC cells and adipocytes, activating the STAT/NF-κB p65 pathway through the production and secretion of CXCL1 and IL6, respectively, thereby promoting TNBC progression. These results propose a potential strategy for developing individualized treatments for patients with TNBC in clinical practice.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"395"},"PeriodicalIF":7.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370983/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adipocyte-derived IL6 and triple-negative breast cancer cell-derived CXCL1 co-activate STAT3/NF-κB pathway to mediate the crosstalk between adipocytes and triple-negative breast cancer cells.\",\"authors\":\"Guo-Tian Ruan, Li-Chen Zhu, Hai-Lun Xie, He-Yang Zhang, Meng-Meng Song, Li Deng, Han-Ping Shi\",\"doi\":\"10.1038/s41420-025-02713-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple-negative breast cancer (TNBC) is correlated to a poor prognosis, especially in the context of obesity. The interaction between adipocytes and TNBC cellsplay a key role in the progression of TNBC. This study aims to investigate the mechanisms underlying the cross-talk and progression between adipocytes and TNBC cells. We established a co-culture model involving mature adipose cells (hADSC and 3T3-L1) and TNBC cells. Cell invasion abilities were assessed using wound healing and Transwell assays. Gene and protein expression levels were examined using RT-PCR, western blotting, and immunostaining. Adipocytokine and chemokine levels were measured using ELISA. Additionally, we developed a fat mouse model induced by a high-fat diet and a tumor-bearing model of TNBC cells in vivo. The results indicated a significant enhancement in the invasion abilities of TNBC cells after co-culture. Mature adipose tissue co-cultured with TNBC cells increased the expression and secretion of C-X-C motif chemokine ligand 1 (CXCL1) and upregulated matrix metalloproteinase 7 (MMP7) and MMP9 in TNBC cells by activating the signal transducer and activator of transcription 3 (STAT3) /nuclear factor-κB p65 (NF-κB p65) pathway. Additionally, co-culture activated the STAT3/NF-κB p65 pathway, increasing the expression and secretion of IL6 in adipocytes. Based on the mouse obesity model, our experiments on orthotopic breast fat pad xenoimplantation showed consistent results in vivo. Our findings suggest a cross-talk between TNBC cells and adipocytes, activating the STAT/NF-κB p65 pathway through the production and secretion of CXCL1 and IL6, respectively, thereby promoting TNBC progression. These results propose a potential strategy for developing individualized treatments for patients with TNBC in clinical practice.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"395\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370983/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02713-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02713-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Adipocyte-derived IL6 and triple-negative breast cancer cell-derived CXCL1 co-activate STAT3/NF-κB pathway to mediate the crosstalk between adipocytes and triple-negative breast cancer cells.
Triple-negative breast cancer (TNBC) is correlated to a poor prognosis, especially in the context of obesity. The interaction between adipocytes and TNBC cellsplay a key role in the progression of TNBC. This study aims to investigate the mechanisms underlying the cross-talk and progression between adipocytes and TNBC cells. We established a co-culture model involving mature adipose cells (hADSC and 3T3-L1) and TNBC cells. Cell invasion abilities were assessed using wound healing and Transwell assays. Gene and protein expression levels were examined using RT-PCR, western blotting, and immunostaining. Adipocytokine and chemokine levels were measured using ELISA. Additionally, we developed a fat mouse model induced by a high-fat diet and a tumor-bearing model of TNBC cells in vivo. The results indicated a significant enhancement in the invasion abilities of TNBC cells after co-culture. Mature adipose tissue co-cultured with TNBC cells increased the expression and secretion of C-X-C motif chemokine ligand 1 (CXCL1) and upregulated matrix metalloproteinase 7 (MMP7) and MMP9 in TNBC cells by activating the signal transducer and activator of transcription 3 (STAT3) /nuclear factor-κB p65 (NF-κB p65) pathway. Additionally, co-culture activated the STAT3/NF-κB p65 pathway, increasing the expression and secretion of IL6 in adipocytes. Based on the mouse obesity model, our experiments on orthotopic breast fat pad xenoimplantation showed consistent results in vivo. Our findings suggest a cross-talk between TNBC cells and adipocytes, activating the STAT/NF-κB p65 pathway through the production and secretion of CXCL1 and IL6, respectively, thereby promoting TNBC progression. These results propose a potential strategy for developing individualized treatments for patients with TNBC in clinical practice.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.