{"title":"人类ipsc衍生的脊髓神经祖细胞通过分化和微环境调节促进NOD-SCID脊髓损伤小鼠的感觉运动恢复。","authors":"Xuanbao Yao, Kehua Zhang, Tao Na, Yuchun Wang, Yuhan Guo, Jiajie Xi, Xiang Li, Shufang Meng, Miao Xu","doi":"10.1038/s41419-025-07961-x","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) remains a significant clinical challenge and poses a dramatic threat to the life quality of patients due to limited neural regeneration and detrimental post-injury alternations in tissue microenvironment. We developed a therapeutic approach by transplanting spinal neural progenitor cells (spNPGs), derived from human induced pluripotent stem cell (iPSC)-generated neuromesodermal progenitors, into a contusive SCI model in NOD-SCID mice. Single-cell RNA sequencing mapped the in vitro differentiation of iPSC-spNPGs, confirming their specification into spinal neuronal lineages. Single-nucleus transcriptomics at 1 week post-transplantation showed that the grafted cells differentiated in vivo into motor neurons and two interneuron subtypes (V2 and dI4). Additionally, spNPGs integrated into host neural circuits, enhancing synaptic connectivity, while simultaneously modulating the injury microenvironment by shifting microglia and astrocyte polarization toward anti-inflammatory and neuroprotective phenotypes. This dual mechanism promoted axonal regrowth, remyelination, and significant sensorimotor recovery, as evidenced by improved locomotor scores. Our findings highlight the therapeutic potential of human iPSC-spNPGs in reconstructing neural networks and mitigating secondary damage, providing compelling preclinical evidence for advancing stem cell-based SCI therapies.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"637"},"PeriodicalIF":9.6000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373886/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human iPSC-derived spinal neural progenitors enhance sensorimotor recovery in spinal cord-injured NOD-SCID mice via differentiation and microenvironment regulation.\",\"authors\":\"Xuanbao Yao, Kehua Zhang, Tao Na, Yuchun Wang, Yuhan Guo, Jiajie Xi, Xiang Li, Shufang Meng, Miao Xu\",\"doi\":\"10.1038/s41419-025-07961-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal cord injury (SCI) remains a significant clinical challenge and poses a dramatic threat to the life quality of patients due to limited neural regeneration and detrimental post-injury alternations in tissue microenvironment. We developed a therapeutic approach by transplanting spinal neural progenitor cells (spNPGs), derived from human induced pluripotent stem cell (iPSC)-generated neuromesodermal progenitors, into a contusive SCI model in NOD-SCID mice. Single-cell RNA sequencing mapped the in vitro differentiation of iPSC-spNPGs, confirming their specification into spinal neuronal lineages. Single-nucleus transcriptomics at 1 week post-transplantation showed that the grafted cells differentiated in vivo into motor neurons and two interneuron subtypes (V2 and dI4). Additionally, spNPGs integrated into host neural circuits, enhancing synaptic connectivity, while simultaneously modulating the injury microenvironment by shifting microglia and astrocyte polarization toward anti-inflammatory and neuroprotective phenotypes. This dual mechanism promoted axonal regrowth, remyelination, and significant sensorimotor recovery, as evidenced by improved locomotor scores. Our findings highlight the therapeutic potential of human iPSC-spNPGs in reconstructing neural networks and mitigating secondary damage, providing compelling preclinical evidence for advancing stem cell-based SCI therapies.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":\"16 1\",\"pages\":\"637\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373886/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-025-07961-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07961-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Human iPSC-derived spinal neural progenitors enhance sensorimotor recovery in spinal cord-injured NOD-SCID mice via differentiation and microenvironment regulation.
Spinal cord injury (SCI) remains a significant clinical challenge and poses a dramatic threat to the life quality of patients due to limited neural regeneration and detrimental post-injury alternations in tissue microenvironment. We developed a therapeutic approach by transplanting spinal neural progenitor cells (spNPGs), derived from human induced pluripotent stem cell (iPSC)-generated neuromesodermal progenitors, into a contusive SCI model in NOD-SCID mice. Single-cell RNA sequencing mapped the in vitro differentiation of iPSC-spNPGs, confirming their specification into spinal neuronal lineages. Single-nucleus transcriptomics at 1 week post-transplantation showed that the grafted cells differentiated in vivo into motor neurons and two interneuron subtypes (V2 and dI4). Additionally, spNPGs integrated into host neural circuits, enhancing synaptic connectivity, while simultaneously modulating the injury microenvironment by shifting microglia and astrocyte polarization toward anti-inflammatory and neuroprotective phenotypes. This dual mechanism promoted axonal regrowth, remyelination, and significant sensorimotor recovery, as evidenced by improved locomotor scores. Our findings highlight the therapeutic potential of human iPSC-spNPGs in reconstructing neural networks and mitigating secondary damage, providing compelling preclinical evidence for advancing stem cell-based SCI therapies.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism