Junxin Li, Chao Zhang, Wei Xia, Hei Wun Kan, Kaifang Huang, Sai Li, Mark Akinola Ige, Qiuliyang Yu, Jiawei Zhao, Xiaochun Wan, John Z H Zhang, Haiping Zhang
{"title":"通过深度学习和计算生物学引导的单点突变显著增强人抗体亲和力。","authors":"Junxin Li, Chao Zhang, Wei Xia, Hei Wun Kan, Kaifang Huang, Sai Li, Mark Akinola Ige, Qiuliyang Yu, Jiawei Zhao, Xiaochun Wan, John Z H Zhang, Haiping Zhang","doi":"10.1093/bib/bbaf445","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancing antibody affinity is a critical goal in antibody design, as it improves therapeutic efficacy, specificity, and safety while reducing dosage requirements. Traditional methods, such as single-point mutations or combinatorial mutagenesis, are limited by the impracticality of exhaustively exploring the vast mutational space. To address this challenge, we developed a novel computational pipeline that integrates evolutionary constraints, antibody-antigen-specific statistical potentials, molecular dynamics simulations, metadynamics, and a suite of deep learning models to identify affinity-enhancing mutations. Our deep learning framework includes MicroMutate, which predicts microenvironment-specific amino acid mutations, and graph-based models that evaluate postmutation antigen-antibody-binding probabilities. Using this approach, we screened 12 single-point mutant antibodies targeting the hemagglutinin of the H7N9 avian influenza virus, starting from antibodies with initial affinities in the subnanomolar range, with one showing a 4.62-fold improvement. To demonstrate the generalizability of our method, we applied it to engineer an antibody against death receptor 5 with initial affinities in the subnanomolar range, successfully identifying a mutant with a 2.07-fold increase in affinity. Our work underscores the transformative potential of integrating deep learning and computational methods for rapidly and precisely discovering affinity-enhancing mutations while preserving immunogenicity and expression. This approach offers a powerful and universal platform for advancing antibody therapeutics.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400800/pdf/","citationCount":"0","resultStr":"{\"title\":\"Significantly enhancing human antibody affinity via deep learning and computational biology-guided single-point mutations.\",\"authors\":\"Junxin Li, Chao Zhang, Wei Xia, Hei Wun Kan, Kaifang Huang, Sai Li, Mark Akinola Ige, Qiuliyang Yu, Jiawei Zhao, Xiaochun Wan, John Z H Zhang, Haiping Zhang\",\"doi\":\"10.1093/bib/bbaf445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enhancing antibody affinity is a critical goal in antibody design, as it improves therapeutic efficacy, specificity, and safety while reducing dosage requirements. Traditional methods, such as single-point mutations or combinatorial mutagenesis, are limited by the impracticality of exhaustively exploring the vast mutational space. To address this challenge, we developed a novel computational pipeline that integrates evolutionary constraints, antibody-antigen-specific statistical potentials, molecular dynamics simulations, metadynamics, and a suite of deep learning models to identify affinity-enhancing mutations. Our deep learning framework includes MicroMutate, which predicts microenvironment-specific amino acid mutations, and graph-based models that evaluate postmutation antigen-antibody-binding probabilities. Using this approach, we screened 12 single-point mutant antibodies targeting the hemagglutinin of the H7N9 avian influenza virus, starting from antibodies with initial affinities in the subnanomolar range, with one showing a 4.62-fold improvement. To demonstrate the generalizability of our method, we applied it to engineer an antibody against death receptor 5 with initial affinities in the subnanomolar range, successfully identifying a mutant with a 2.07-fold increase in affinity. Our work underscores the transformative potential of integrating deep learning and computational methods for rapidly and precisely discovering affinity-enhancing mutations while preserving immunogenicity and expression. This approach offers a powerful and universal platform for advancing antibody therapeutics.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400800/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf445\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf445","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Significantly enhancing human antibody affinity via deep learning and computational biology-guided single-point mutations.
Enhancing antibody affinity is a critical goal in antibody design, as it improves therapeutic efficacy, specificity, and safety while reducing dosage requirements. Traditional methods, such as single-point mutations or combinatorial mutagenesis, are limited by the impracticality of exhaustively exploring the vast mutational space. To address this challenge, we developed a novel computational pipeline that integrates evolutionary constraints, antibody-antigen-specific statistical potentials, molecular dynamics simulations, metadynamics, and a suite of deep learning models to identify affinity-enhancing mutations. Our deep learning framework includes MicroMutate, which predicts microenvironment-specific amino acid mutations, and graph-based models that evaluate postmutation antigen-antibody-binding probabilities. Using this approach, we screened 12 single-point mutant antibodies targeting the hemagglutinin of the H7N9 avian influenza virus, starting from antibodies with initial affinities in the subnanomolar range, with one showing a 4.62-fold improvement. To demonstrate the generalizability of our method, we applied it to engineer an antibody against death receptor 5 with initial affinities in the subnanomolar range, successfully identifying a mutant with a 2.07-fold increase in affinity. Our work underscores the transformative potential of integrating deep learning and computational methods for rapidly and precisely discovering affinity-enhancing mutations while preserving immunogenicity and expression. This approach offers a powerful and universal platform for advancing antibody therapeutics.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.