MCAMEF-BERT:基于多分支特征集成的RNA n7 -甲基鸟苷位点预测的高效深度学习方法。

IF 7.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Junlei Yu, Wenjia Gao, Siqi Chen, Ronglin Lu, Jianbo Qiao, Junru Jin, Leyi Wei, Hua Shi, Zilong Zhang, Feifei Cui, Xinbo Jiang, Zhongmin Yan
{"title":"MCAMEF-BERT:基于多分支特征集成的RNA n7 -甲基鸟苷位点预测的高效深度学习方法。","authors":"Junlei Yu, Wenjia Gao, Siqi Chen, Ronglin Lu, Jianbo Qiao, Junru Jin, Leyi Wei, Hua Shi, Zilong Zhang, Feifei Cui, Xinbo Jiang, Zhongmin Yan","doi":"10.1093/bib/bbaf447","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of N7-methylguanosine (m7G) modification sites plays a critical role in uncovering the regulatory mechanisms of various biological processes, including human development, tumor initiation, and progression. However, existing prediction methods still suffer from limited representational power, redundant feature fusion, insufficient utilization of biological prior knowledge, and poor interpretability. In this study, we propose a novel deep learning model named MCAMEF-BERT. This model adopts a parallel architecture that integrates both a DNABERT-2-based pretrained model branch and multiple traditional feature encoding branches, enabling comprehensive multi-perspective sequence feature extraction. To address the redundancy issue in feature fusion, we introduce a multi-channel attention module. Our model demonstrates superior accuracy and effectiveness on datasets from m7GHub, outperforming other state-of-the-art classifiers. Furthermore, we validate the interpretability of MCAMEF-BERT through in silico saturation mutagenesis experiments, and confirm its robustness in motif recognition. Moreover, its generalization capability is validated across diverse RNA modification site prediction tasks.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400811/pdf/","citationCount":"0","resultStr":"{\"title\":\"MCAMEF-BERT: an efficient deep learning method for RNA N7-methylguanosine site prediction via multi-branch feature integration.\",\"authors\":\"Junlei Yu, Wenjia Gao, Siqi Chen, Ronglin Lu, Jianbo Qiao, Junru Jin, Leyi Wei, Hua Shi, Zilong Zhang, Feifei Cui, Xinbo Jiang, Zhongmin Yan\",\"doi\":\"10.1093/bib/bbaf447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate identification of N7-methylguanosine (m7G) modification sites plays a critical role in uncovering the regulatory mechanisms of various biological processes, including human development, tumor initiation, and progression. However, existing prediction methods still suffer from limited representational power, redundant feature fusion, insufficient utilization of biological prior knowledge, and poor interpretability. In this study, we propose a novel deep learning model named MCAMEF-BERT. This model adopts a parallel architecture that integrates both a DNABERT-2-based pretrained model branch and multiple traditional feature encoding branches, enabling comprehensive multi-perspective sequence feature extraction. To address the redundancy issue in feature fusion, we introduce a multi-channel attention module. Our model demonstrates superior accuracy and effectiveness on datasets from m7GHub, outperforming other state-of-the-art classifiers. Furthermore, we validate the interpretability of MCAMEF-BERT through in silico saturation mutagenesis experiments, and confirm its robustness in motif recognition. Moreover, its generalization capability is validated across diverse RNA modification site prediction tasks.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400811/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf447\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf447","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

准确鉴定n7 -甲基鸟苷(m7G)修饰位点对揭示包括人类发育、肿瘤发生和进展在内的各种生物过程的调控机制起着至关重要的作用。然而,现有的预测方法仍然存在表征能力有限、特征融合冗余、生物先验知识利用不足、可解释性差等问题。在这项研究中,我们提出了一种新的深度学习模型MCAMEF-BERT。该模型采用基于dnabert -2的预训练模型分支和多个传统特征编码分支相结合的并行架构,实现了多视角序列特征的综合提取。为了解决特征融合中的冗余问题,我们引入了一个多通道关注模块。我们的模型在来自m7GHub的数据集上展示了卓越的准确性和有效性,优于其他最先进的分类器。此外,我们通过硅饱和诱变实验验证了MCAMEF-BERT的可解释性,并证实了其在基序识别中的鲁棒性。此外,在不同的RNA修饰位点预测任务中验证了其泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MCAMEF-BERT: an efficient deep learning method for RNA N7-methylguanosine site prediction via multi-branch feature integration.

MCAMEF-BERT: an efficient deep learning method for RNA N7-methylguanosine site prediction via multi-branch feature integration.

MCAMEF-BERT: an efficient deep learning method for RNA N7-methylguanosine site prediction via multi-branch feature integration.

MCAMEF-BERT: an efficient deep learning method for RNA N7-methylguanosine site prediction via multi-branch feature integration.

Accurate identification of N7-methylguanosine (m7G) modification sites plays a critical role in uncovering the regulatory mechanisms of various biological processes, including human development, tumor initiation, and progression. However, existing prediction methods still suffer from limited representational power, redundant feature fusion, insufficient utilization of biological prior knowledge, and poor interpretability. In this study, we propose a novel deep learning model named MCAMEF-BERT. This model adopts a parallel architecture that integrates both a DNABERT-2-based pretrained model branch and multiple traditional feature encoding branches, enabling comprehensive multi-perspective sequence feature extraction. To address the redundancy issue in feature fusion, we introduce a multi-channel attention module. Our model demonstrates superior accuracy and effectiveness on datasets from m7GHub, outperforming other state-of-the-art classifiers. Furthermore, we validate the interpretability of MCAMEF-BERT through in silico saturation mutagenesis experiments, and confirm its robustness in motif recognition. Moreover, its generalization capability is validated across diverse RNA modification site prediction tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信