scSorterDL:一个用于单细胞分类的深度神经网络增强集成lda。

IF 7.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Kailun Bai, Belaid Moa, Xiaojian Shao, Xuekui Zhang
{"title":"scSorterDL:一个用于单细胞分类的深度神经网络增强集成lda。","authors":"Kailun Bai, Belaid Moa, Xiaojian Shao, Xuekui Zhang","doi":"10.1093/bib/bbaf446","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of single-cell RNA sequencing (scRNA-seq) technology has transformed our understanding of cellular diversity, yet it presents notable challenges for cell type annotation due to data's high dimensionality and sparsity. To tackle these issues, we present scSorterDL, an innovative approach that combines penalized Linear Discriminant Analysis (pLDA), swarm learning, and deep neural networks (DNNs) to improve cell type classification. In scSorterDL, we generate numerous random subsets of the data and apply pLDA models to each subset to capture varied data aspects. The model outputs are then consolidated using a DNN that identifies complex relationships among the pLDA scores, enhancing classification accuracy by considering interactions that simpler methods might overlook. Utilizing GPU computing for both swarm learning and deep learning, scSorterDL adeptly manages large datasets and high-dimensional gene expression data. We tested scSorterDL on 13 real scRNA-seq datasets from diverse species, tissues, and platforms, as well as on 20 pairs of cross-platform datasets. Our method surpassed nine current cell annotation tools in both accuracy and robustness, indicating exceptional performance in both cross-validation and cross-platform contexts. These findings underscore the potential of scSorterDL as an effective and adaptable tool for automated cell type annotation in scRNA-seq research. The code is available on GitHub: https://github.com/kellen8hao/scSorterDL.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400813/pdf/","citationCount":"0","resultStr":"{\"title\":\"scSorterDL: a deep neural network-enhanced ensemble LDAs for single cell classifications.\",\"authors\":\"Kailun Bai, Belaid Moa, Xiaojian Shao, Xuekui Zhang\",\"doi\":\"10.1093/bib/bbaf446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of single-cell RNA sequencing (scRNA-seq) technology has transformed our understanding of cellular diversity, yet it presents notable challenges for cell type annotation due to data's high dimensionality and sparsity. To tackle these issues, we present scSorterDL, an innovative approach that combines penalized Linear Discriminant Analysis (pLDA), swarm learning, and deep neural networks (DNNs) to improve cell type classification. In scSorterDL, we generate numerous random subsets of the data and apply pLDA models to each subset to capture varied data aspects. The model outputs are then consolidated using a DNN that identifies complex relationships among the pLDA scores, enhancing classification accuracy by considering interactions that simpler methods might overlook. Utilizing GPU computing for both swarm learning and deep learning, scSorterDL adeptly manages large datasets and high-dimensional gene expression data. We tested scSorterDL on 13 real scRNA-seq datasets from diverse species, tissues, and platforms, as well as on 20 pairs of cross-platform datasets. Our method surpassed nine current cell annotation tools in both accuracy and robustness, indicating exceptional performance in both cross-validation and cross-platform contexts. These findings underscore the potential of scSorterDL as an effective and adaptable tool for automated cell type annotation in scRNA-seq research. The code is available on GitHub: https://github.com/kellen8hao/scSorterDL.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400813/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf446\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf446","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

单细胞RNA测序(scRNA-seq)技术的出现改变了我们对细胞多样性的理解,但由于数据的高维性和稀疏性,它给细胞类型注释带来了显着的挑战。为了解决这些问题,我们提出了scSorterDL,这是一种结合了惩罚性线性判别分析(pLDA)、群体学习和深度神经网络(dnn)的创新方法,以改进细胞类型分类。在scSorterDL中,我们生成大量随机数据子集,并对每个子集应用pLDA模型来捕获不同的数据方面。然后使用识别pLDA分数之间复杂关系的DNN来整合模型输出,通过考虑简单方法可能忽略的相互作用来提高分类准确性。scSorterDL利用GPU计算进行群学习和深度学习,熟练地管理大型数据集和高维基因表达数据。我们在13个真实的scRNA-seq数据集上测试了scSorterDL,这些数据集来自不同的物种、组织和平台,以及20对跨平台数据集。我们的方法在准确性和鲁棒性方面都超过了目前的九种细胞注释工具,表明在交叉验证和跨平台上下文中都具有出色的性能。这些发现强调了scSorterDL作为scRNA-seq研究中自动细胞类型注释的有效和适应性工具的潜力。代码可在GitHub上获得:https://github.com/kellen8hao/scSorterDL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

scSorterDL: a deep neural network-enhanced ensemble LDAs for single cell classifications.

scSorterDL: a deep neural network-enhanced ensemble LDAs for single cell classifications.

scSorterDL: a deep neural network-enhanced ensemble LDAs for single cell classifications.

scSorterDL: a deep neural network-enhanced ensemble LDAs for single cell classifications.

The emergence of single-cell RNA sequencing (scRNA-seq) technology has transformed our understanding of cellular diversity, yet it presents notable challenges for cell type annotation due to data's high dimensionality and sparsity. To tackle these issues, we present scSorterDL, an innovative approach that combines penalized Linear Discriminant Analysis (pLDA), swarm learning, and deep neural networks (DNNs) to improve cell type classification. In scSorterDL, we generate numerous random subsets of the data and apply pLDA models to each subset to capture varied data aspects. The model outputs are then consolidated using a DNN that identifies complex relationships among the pLDA scores, enhancing classification accuracy by considering interactions that simpler methods might overlook. Utilizing GPU computing for both swarm learning and deep learning, scSorterDL adeptly manages large datasets and high-dimensional gene expression data. We tested scSorterDL on 13 real scRNA-seq datasets from diverse species, tissues, and platforms, as well as on 20 pairs of cross-platform datasets. Our method surpassed nine current cell annotation tools in both accuracy and robustness, indicating exceptional performance in both cross-validation and cross-platform contexts. These findings underscore the potential of scSorterDL as an effective and adaptable tool for automated cell type annotation in scRNA-seq research. The code is available on GitHub: https://github.com/kellen8hao/scSorterDL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信