小鼠神经元脑机接口放电速率的双向优化。

IF 3 2区 生物学 Q2 BIOLOGY
Biology Letters Pub Date : 2025-09-01 Epub Date: 2025-09-03 DOI:10.1098/rsbl.2025.0176
Yixun Zhao, Pengying Lu, Xiao Wang, Ming Yin
{"title":"小鼠神经元脑机接口放电速率的双向优化。","authors":"Yixun Zhao, Pengying Lu, Xiao Wang, Ming Yin","doi":"10.1098/rsbl.2025.0176","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroplasticity enables the brain to adapt neural activity, but whether this can be harnessed for abstract optimization tasks like seeking curve extrema remains unclear. Here, we used a brain-machine interface in mice, pairing auditory feedback of neuronal firing rate with water rewards, to investigate whether motor cortex neurons can optimize activity along a unimodal curve ([Formula: see text]). The curve maps firing rate ([Formula: see text]) to sound frequency increase speed ([Formula: see text]), where the curve extremum accelerates reward acquisition. Over conditioning sessions, mice learned to modulate firing rates towards this peak, reducing reward time from 18.64 ± 7.30 s to 11.59 ± 4.38 s and increasing high-response events from 66 to 104 occurrences. Putative neurons increasingly prioritized high-response intervals, with positive proportion increments in upper intervals versus negative trends in lower ones. These findings demonstrate that cortical neurons can dynamically optimize activity along non-monotonic reward landscapes, revealing neuroplasticity as a substrate for adaptive self-optimization. This expands our understanding of how the brain learns abstract rules via feedback, with implications for neuroprosthetic design that leverage neural adaptability.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":"21 9","pages":"20250176"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405940/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bidirectional optimization of firing rate in a mouse neuronal brain-machine interface.\",\"authors\":\"Yixun Zhao, Pengying Lu, Xiao Wang, Ming Yin\",\"doi\":\"10.1098/rsbl.2025.0176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroplasticity enables the brain to adapt neural activity, but whether this can be harnessed for abstract optimization tasks like seeking curve extrema remains unclear. Here, we used a brain-machine interface in mice, pairing auditory feedback of neuronal firing rate with water rewards, to investigate whether motor cortex neurons can optimize activity along a unimodal curve ([Formula: see text]). The curve maps firing rate ([Formula: see text]) to sound frequency increase speed ([Formula: see text]), where the curve extremum accelerates reward acquisition. Over conditioning sessions, mice learned to modulate firing rates towards this peak, reducing reward time from 18.64 ± 7.30 s to 11.59 ± 4.38 s and increasing high-response events from 66 to 104 occurrences. Putative neurons increasingly prioritized high-response intervals, with positive proportion increments in upper intervals versus negative trends in lower ones. These findings demonstrate that cortical neurons can dynamically optimize activity along non-monotonic reward landscapes, revealing neuroplasticity as a substrate for adaptive self-optimization. This expands our understanding of how the brain learns abstract rules via feedback, with implications for neuroprosthetic design that leverage neural adaptability.</p>\",\"PeriodicalId\":9005,\"journal\":{\"name\":\"Biology Letters\",\"volume\":\"21 9\",\"pages\":\"20250176\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405940/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsbl.2025.0176\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsbl.2025.0176","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经可塑性使大脑能够适应神经活动,但是否可以利用它来进行抽象的优化任务,如寻找曲线极值,目前尚不清楚。在这里,我们在小鼠中使用脑机接口,将神经元放电率的听觉反馈与水奖励配对,以研究运动皮层神经元是否可以沿着单峰曲线优化活动([公式:见文本])。曲线将发射速率(公式:见文本)映射到声音频率增加速度(公式:见文本),其中曲线极值加速了奖励获取。在条件反射过程中,小鼠学会了向这个峰值调节放电速率,将奖励时间从18.64±7.30秒减少到11.59±4.38秒,并将高反应事件从66次增加到104次。假设的神经元越来越优先考虑高响应区间,高响应区间的比例增加为正,而低响应区间的比例增加为负。这些发现表明,皮层神经元可以沿着非单调的奖励景观动态优化活动,揭示了神经可塑性作为适应性自我优化的基础。这扩展了我们对大脑如何通过反馈学习抽象规则的理解,对利用神经适应性的神经假肢设计也有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bidirectional optimization of firing rate in a mouse neuronal brain-machine interface.

Neuroplasticity enables the brain to adapt neural activity, but whether this can be harnessed for abstract optimization tasks like seeking curve extrema remains unclear. Here, we used a brain-machine interface in mice, pairing auditory feedback of neuronal firing rate with water rewards, to investigate whether motor cortex neurons can optimize activity along a unimodal curve ([Formula: see text]). The curve maps firing rate ([Formula: see text]) to sound frequency increase speed ([Formula: see text]), where the curve extremum accelerates reward acquisition. Over conditioning sessions, mice learned to modulate firing rates towards this peak, reducing reward time from 18.64 ± 7.30 s to 11.59 ± 4.38 s and increasing high-response events from 66 to 104 occurrences. Putative neurons increasingly prioritized high-response intervals, with positive proportion increments in upper intervals versus negative trends in lower ones. These findings demonstrate that cortical neurons can dynamically optimize activity along non-monotonic reward landscapes, revealing neuroplasticity as a substrate for adaptive self-optimization. This expands our understanding of how the brain learns abstract rules via feedback, with implications for neuroprosthetic design that leverage neural adaptability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology Letters
Biology Letters 生物-进化生物学
CiteScore
5.50
自引率
3.00%
发文量
164
审稿时长
1.0 months
期刊介绍: Previously a supplement to Proceedings B, and launched as an independent journal in 2005, Biology Letters is a primarily online, peer-reviewed journal that publishes short, high-quality articles, reviews and opinion pieces from across the biological sciences. The scope of Biology Letters is vast - publishing high-quality research in any area of the biological sciences. However, we have particular strengths in the biology, evolution and ecology of whole organisms. We also publish in other areas of biology, such as molecular ecology and evolution, environmental science, and phylogenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信