革命性的毒理学风险评估:新方法方法(NAMs)和精确毒理学的综合进展。

IF 6.9 2区 医学 Q1 TOXICOLOGY
Qiu-Shuang Sheng, Bin Liu, Xiao Wang, Lei Hua, Shou-Cheng Zhao, Xiao-Zhong Sun, Mu-Yang Li, Xiang-Yu Zhang, Jia-Xu Wang, Pei-Li Hu
{"title":"革命性的毒理学风险评估:新方法方法(NAMs)和精确毒理学的综合进展。","authors":"Qiu-Shuang Sheng, Bin Liu, Xiao Wang, Lei Hua, Shou-Cheng Zhao, Xiao-Zhong Sun, Mu-Yang Li, Xiang-Yu Zhang, Jia-Xu Wang, Pei-Li Hu","doi":"10.1007/s00204-025-04169-y","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional toxicological paradigms, reliant on animal testing and simplistic in vitro models, face significant limitations, including prolonged timelines, high costs, and poor translational predictability due to interspecies differences. This review highlights the transformative potential of New Approach Methodologies (NAMs) in overcoming these challenges. Key advancements include Organ-on-a-Chip (OoC) platforms that emulate human organ physiology and multi-organ crosstalk, significantly improving predictive accuracy. Integration of multi-omics technologies (genomics, proteomics, metabolomics) provides unprecedented mechanistic insights into toxicity pathways. Computational toxicology, leveraging machine learning and QSAR modeling, enables high-throughput hazard prioritization and risk prediction. While NAMs offer human-relevant, efficient alternatives for chemical safety evaluation, critical bottlenecks remain. These involve insufficient physiological complexity in current in vitro models, interpretability limitations of AI-driven approaches, challenges in quantifying mixture toxicity and low-dose effects, and a lag in regulatory adoption. Emerging strategies like probabilistic risk assessment, AI-driven exposomics, and tiered testing paradigms hold promise for addressing chemical mixture risks and personalized exposures. Future progress requires interdisciplinary collaboration to refine microphysiological systems, harmonize regulatory frameworks with scientific innovation, and establish open-access data repositories, paving the way for precision toxicology and sustainable chemical risk management.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing toxicological risk assessment: integrative advances in new approach methodologies (NAMs) and precision toxicology.\",\"authors\":\"Qiu-Shuang Sheng, Bin Liu, Xiao Wang, Lei Hua, Shou-Cheng Zhao, Xiao-Zhong Sun, Mu-Yang Li, Xiang-Yu Zhang, Jia-Xu Wang, Pei-Li Hu\",\"doi\":\"10.1007/s00204-025-04169-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional toxicological paradigms, reliant on animal testing and simplistic in vitro models, face significant limitations, including prolonged timelines, high costs, and poor translational predictability due to interspecies differences. This review highlights the transformative potential of New Approach Methodologies (NAMs) in overcoming these challenges. Key advancements include Organ-on-a-Chip (OoC) platforms that emulate human organ physiology and multi-organ crosstalk, significantly improving predictive accuracy. Integration of multi-omics technologies (genomics, proteomics, metabolomics) provides unprecedented mechanistic insights into toxicity pathways. Computational toxicology, leveraging machine learning and QSAR modeling, enables high-throughput hazard prioritization and risk prediction. While NAMs offer human-relevant, efficient alternatives for chemical safety evaluation, critical bottlenecks remain. These involve insufficient physiological complexity in current in vitro models, interpretability limitations of AI-driven approaches, challenges in quantifying mixture toxicity and low-dose effects, and a lag in regulatory adoption. Emerging strategies like probabilistic risk assessment, AI-driven exposomics, and tiered testing paradigms hold promise for addressing chemical mixture risks and personalized exposures. Future progress requires interdisciplinary collaboration to refine microphysiological systems, harmonize regulatory frameworks with scientific innovation, and establish open-access data repositories, paving the way for precision toxicology and sustainable chemical risk management.</p>\",\"PeriodicalId\":8329,\"journal\":{\"name\":\"Archives of Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00204-025-04169-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-025-04169-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

传统的毒理学范式依赖于动物试验和简单的体外模型,面临着重大的局限性,包括时间长、成本高,以及由于物种间差异而导致的翻译可预测性差。本综述强调了新方法方法(NAMs)在克服这些挑战方面的变革潜力。主要进展包括模拟人体器官生理和多器官串扰的器官芯片(OoC)平台,显著提高了预测准确性。多组学技术(基因组学、蛋白质组学、代谢组学)的整合为毒性途径提供了前所未有的机制见解。计算毒理学,利用机器学习和QSAR建模,实现高通量的危害优先级和风险预测。虽然NAMs为化学品安全评估提供了与人类相关的、有效的替代方案,但关键的瓶颈仍然存在。其中包括目前体外模型的生理复杂性不足,人工智能驱动方法的可解释性限制,量化混合物毒性和低剂量效应方面的挑战,以及监管采用的滞后。诸如概率风险评估、人工智能驱动的暴露学和分层测试范例等新兴策略有望解决化学混合物风险和个性化暴露问题。未来的进展需要跨学科合作来完善微生理系统,协调监管框架与科学创新,建立开放获取的数据库,为精确毒理学和可持续化学品风险管理铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revolutionizing toxicological risk assessment: integrative advances in new approach methodologies (NAMs) and precision toxicology.

Traditional toxicological paradigms, reliant on animal testing and simplistic in vitro models, face significant limitations, including prolonged timelines, high costs, and poor translational predictability due to interspecies differences. This review highlights the transformative potential of New Approach Methodologies (NAMs) in overcoming these challenges. Key advancements include Organ-on-a-Chip (OoC) platforms that emulate human organ physiology and multi-organ crosstalk, significantly improving predictive accuracy. Integration of multi-omics technologies (genomics, proteomics, metabolomics) provides unprecedented mechanistic insights into toxicity pathways. Computational toxicology, leveraging machine learning and QSAR modeling, enables high-throughput hazard prioritization and risk prediction. While NAMs offer human-relevant, efficient alternatives for chemical safety evaluation, critical bottlenecks remain. These involve insufficient physiological complexity in current in vitro models, interpretability limitations of AI-driven approaches, challenges in quantifying mixture toxicity and low-dose effects, and a lag in regulatory adoption. Emerging strategies like probabilistic risk assessment, AI-driven exposomics, and tiered testing paradigms hold promise for addressing chemical mixture risks and personalized exposures. Future progress requires interdisciplinary collaboration to refine microphysiological systems, harmonize regulatory frameworks with scientific innovation, and establish open-access data repositories, paving the way for precision toxicology and sustainable chemical risk management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Toxicology
Archives of Toxicology 医学-毒理学
CiteScore
11.60
自引率
4.90%
发文量
218
审稿时长
1.5 months
期刊介绍: Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信