取代乙酰芬太尼型新型精神活性物质体外代谢谱及结构-代谢关系研究。

IF 6.9 2区 医学 Q1 TOXICOLOGY
Xuan Luo, Qian Li, Kejian Huang, Xiaofeng Liu, Ning Yang, Qiulian Luo
{"title":"取代乙酰芬太尼型新型精神活性物质体外代谢谱及结构-代谢关系研究。","authors":"Xuan Luo, Qian Li, Kejian Huang, Xiaofeng Liu, Ning Yang, Qiulian Luo","doi":"10.1007/s00204-025-04179-w","DOIUrl":null,"url":null,"abstract":"<p><p>The abuse of fentanyl-type new psychoactive substances (F-NPS), which exhibit the four defining characteristics of new psychoactive substances (third-generation drugs), poses a severe threat to social stability and public health. The derivatization strategy investigated in this study, involving six substituted acetyl F-NPS across two substitution patterns, represents the primary approach for generating a new F-NPS. Using an in vitro human liver microsome metabolic model coupled with liquid chromatography-ion trap tandem time-of-flight mass spectrometry, we identified characteristic metabolism profiles of F-NPS corresponding to derivatization modifications while elucidating the structural effects on metabolism. This study revealed that, first, metabolism via amide hydrolysis was affected by concurrent hydrolysis at adjacent positions, rather than being solely determined by carbonyl carbon electrophilicity. Second, metabolism via N-oxidation and N-dealkylation shared a common initial intermediate, with the latter being triggered by α-hydroxylation of the phenethyl group. Third, metabolism via N-oxidation exhibited reduced susceptibility to structural changes owing to the contradictory bond orientations of the substituents on the piperidine ring between the parent drug and its N-oxide metabolite. Fourth, stable geminal diol metabolites were identified in the substituted acetyl F-NPS metabolites via mass spectrometric fragmentation. This research deepens the understanding of structure-metabolism relationships among F-NPS, providing critical foundational data for developing predictive metabolisms for emerging F-NPS and offering scientific support for drug abuse surveillance and prevention strategies.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro metabolic profiling and structure-metabolism relationships of substituted acetyl fentanyl-type new psychoactive substances.\",\"authors\":\"Xuan Luo, Qian Li, Kejian Huang, Xiaofeng Liu, Ning Yang, Qiulian Luo\",\"doi\":\"10.1007/s00204-025-04179-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The abuse of fentanyl-type new psychoactive substances (F-NPS), which exhibit the four defining characteristics of new psychoactive substances (third-generation drugs), poses a severe threat to social stability and public health. The derivatization strategy investigated in this study, involving six substituted acetyl F-NPS across two substitution patterns, represents the primary approach for generating a new F-NPS. Using an in vitro human liver microsome metabolic model coupled with liquid chromatography-ion trap tandem time-of-flight mass spectrometry, we identified characteristic metabolism profiles of F-NPS corresponding to derivatization modifications while elucidating the structural effects on metabolism. This study revealed that, first, metabolism via amide hydrolysis was affected by concurrent hydrolysis at adjacent positions, rather than being solely determined by carbonyl carbon electrophilicity. Second, metabolism via N-oxidation and N-dealkylation shared a common initial intermediate, with the latter being triggered by α-hydroxylation of the phenethyl group. Third, metabolism via N-oxidation exhibited reduced susceptibility to structural changes owing to the contradictory bond orientations of the substituents on the piperidine ring between the parent drug and its N-oxide metabolite. Fourth, stable geminal diol metabolites were identified in the substituted acetyl F-NPS metabolites via mass spectrometric fragmentation. This research deepens the understanding of structure-metabolism relationships among F-NPS, providing critical foundational data for developing predictive metabolisms for emerging F-NPS and offering scientific support for drug abuse surveillance and prevention strategies.</p>\",\"PeriodicalId\":8329,\"journal\":{\"name\":\"Archives of Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00204-025-04179-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-025-04179-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

芬太尼类新型精神活性物质具有新型精神活性物质(第三代药物)的四个决定性特征,其滥用对社会稳定和公众健康构成严重威胁。本研究中所研究的衍生化策略,涉及六种取代的乙酰F-NPS跨越两种取代模式,代表了生成新F-NPS的主要方法。利用体外人肝微粒体代谢模型,结合液相色谱-离子阱串联飞行时间质谱,我们确定了衍生化修饰对应的F-NPS的特征代谢谱,同时阐明了其结构对代谢的影响。这项研究表明,首先,酰胺水解代谢受到相邻位置同时水解的影响,而不是仅仅由羰基碳亲电性决定。其次,通过n -氧化和n -脱烷基的代谢有一个共同的初始中间体,后者由苯基的α-羟基化触发。第三,由于母体药物与其n -氧化物代谢物之间哌啶环上取代基的键取向矛盾,通过n -氧化代谢的药物对结构变化的敏感性降低。第四,在取代的乙酰F-NPS代谢物中,通过质谱碎片化鉴定出稳定的双酚代谢物。本研究加深了对F-NPS结构-代谢关系的理解,为开发新型F-NPS的预测代谢机制提供了重要的基础数据,并为药物滥用监测和预防策略提供了科学支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vitro metabolic profiling and structure-metabolism relationships of substituted acetyl fentanyl-type new psychoactive substances.

The abuse of fentanyl-type new psychoactive substances (F-NPS), which exhibit the four defining characteristics of new psychoactive substances (third-generation drugs), poses a severe threat to social stability and public health. The derivatization strategy investigated in this study, involving six substituted acetyl F-NPS across two substitution patterns, represents the primary approach for generating a new F-NPS. Using an in vitro human liver microsome metabolic model coupled with liquid chromatography-ion trap tandem time-of-flight mass spectrometry, we identified characteristic metabolism profiles of F-NPS corresponding to derivatization modifications while elucidating the structural effects on metabolism. This study revealed that, first, metabolism via amide hydrolysis was affected by concurrent hydrolysis at adjacent positions, rather than being solely determined by carbonyl carbon electrophilicity. Second, metabolism via N-oxidation and N-dealkylation shared a common initial intermediate, with the latter being triggered by α-hydroxylation of the phenethyl group. Third, metabolism via N-oxidation exhibited reduced susceptibility to structural changes owing to the contradictory bond orientations of the substituents on the piperidine ring between the parent drug and its N-oxide metabolite. Fourth, stable geminal diol metabolites were identified in the substituted acetyl F-NPS metabolites via mass spectrometric fragmentation. This research deepens the understanding of structure-metabolism relationships among F-NPS, providing critical foundational data for developing predictive metabolisms for emerging F-NPS and offering scientific support for drug abuse surveillance and prevention strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Toxicology
Archives of Toxicology 医学-毒理学
CiteScore
11.60
自引率
4.90%
发文量
218
审稿时长
1.5 months
期刊介绍: Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信