长链酰基辅酶a合成酶在肝细胞癌和铁下垂中的作用。

IF 3.3 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Peyton Classon, Alexander Q Wixom, Natalia Calixto Mancipe, Rondell P Graham, Yu Zhao, Nguyen Tran, Timucin Taner, Davide Povero
{"title":"长链酰基辅酶a合成酶在肝细胞癌和铁下垂中的作用。","authors":"Peyton Classon, Alexander Q Wixom, Natalia Calixto Mancipe, Rondell P Graham, Yu Zhao, Nguyen Tran, Timucin Taner, Davide Povero","doi":"10.1152/ajpgi.00096.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic-associated steatohepatitis-driven hepatocellular carcinoma (MASH-HCC) incidence is rapidly rising worldwide. Lipid metabolic reprogramming is a hallmark of solid tumors to satisfy cancer high metabolic demand. However, it may confer sensitivity to ferroptosis, a cell death mode driven by iron-dependent lipid peroxidation. In this report, we describe the lipid metabolic landscape in MASH-HCC and characterize long chain acyl-CoA synthetases (ACSLs), a family of enzymes involved in synthesis of cellular lipids. Bulk RNA-sequencing, single-cell RNA-sequencing, spatial transcriptomics and immunohistochemistry analyses of human MASH-HCC were integrated to identify differentially expressed lipid metabolism genes. Ferroptosis <i>in vitro</i> was assessed in human HCC cell lines. A characterization of ACSLs was also conducted at the single-cell level in a diet-induced experimental murine model of MASH-HCC. Our analysis revealed that in human MASH-HCC, ACSLs exhibit a heterogeneous expression, with ACSL4 notably enriched in tumor tissues, contrasting with ACSL5 upregulation in non-cancerous MASH. We identified a unique lipid metabolic gene signature of MASH-HCC, which included genes associated with ferroptosis vulnerability. <i>In vitro</i>, high ACSL4 expression was associated with increased ferroptosis sensitivity in human HCC cell lines. Lastly, single-cell RNA-sequencing revealed elevated ACSL4 expression in immune cells in a murine MASH-HCC model, suggesting a role of ACSL4 in shaping the tumor immune microenvironment. Overall, this report offers new insights into lipid metabolic landscape and ferroptosis sensitivity for novel MASH-HCC treatments.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Long Chain Acyl-CoA Synthetases in MASH-driven Hepatocellular Carcinoma and Ferroptosis.\",\"authors\":\"Peyton Classon, Alexander Q Wixom, Natalia Calixto Mancipe, Rondell P Graham, Yu Zhao, Nguyen Tran, Timucin Taner, Davide Povero\",\"doi\":\"10.1152/ajpgi.00096.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic-associated steatohepatitis-driven hepatocellular carcinoma (MASH-HCC) incidence is rapidly rising worldwide. Lipid metabolic reprogramming is a hallmark of solid tumors to satisfy cancer high metabolic demand. However, it may confer sensitivity to ferroptosis, a cell death mode driven by iron-dependent lipid peroxidation. In this report, we describe the lipid metabolic landscape in MASH-HCC and characterize long chain acyl-CoA synthetases (ACSLs), a family of enzymes involved in synthesis of cellular lipids. Bulk RNA-sequencing, single-cell RNA-sequencing, spatial transcriptomics and immunohistochemistry analyses of human MASH-HCC were integrated to identify differentially expressed lipid metabolism genes. Ferroptosis <i>in vitro</i> was assessed in human HCC cell lines. A characterization of ACSLs was also conducted at the single-cell level in a diet-induced experimental murine model of MASH-HCC. Our analysis revealed that in human MASH-HCC, ACSLs exhibit a heterogeneous expression, with ACSL4 notably enriched in tumor tissues, contrasting with ACSL5 upregulation in non-cancerous MASH. We identified a unique lipid metabolic gene signature of MASH-HCC, which included genes associated with ferroptosis vulnerability. <i>In vitro</i>, high ACSL4 expression was associated with increased ferroptosis sensitivity in human HCC cell lines. Lastly, single-cell RNA-sequencing revealed elevated ACSL4 expression in immune cells in a murine MASH-HCC model, suggesting a role of ACSL4 in shaping the tumor immune microenvironment. Overall, this report offers new insights into lipid metabolic landscape and ferroptosis sensitivity for novel MASH-HCC treatments.</p>\",\"PeriodicalId\":7725,\"journal\":{\"name\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpgi.00096.2025\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00096.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

代谢相关脂肪性肝炎驱动的肝细胞癌(MASH-HCC)发病率在全球范围内迅速上升。脂质代谢重编程是实体瘤满足肿瘤高代谢需求的标志。然而,它可能赋予对铁下垂的敏感性,铁下垂是一种由铁依赖性脂质过氧化驱动的细胞死亡模式。在本报告中,我们描述了MASH-HCC的脂质代谢景观,并表征了长链酰基辅酶a合成酶(acsl),这是一个参与细胞脂质合成的酶家族。整合人msh - hcc的大量rna测序、单细胞rna测序、空间转录组学和免疫组织化学分析,以鉴定差异表达的脂质代谢基因。对人肝癌细胞系进行了铁下垂的体外研究。在饮食诱导的小鼠MASH-HCC实验模型中,我们也在单细胞水平上对acsl进行了表征。我们的分析显示,在人类MASH- hcc中,ACSLs表现出异质性表达,其中ACSL4在肿瘤组织中显著富集,而ACSL5在非癌性MASH中上调。我们确定了msh - hcc的独特脂质代谢基因特征,其中包括与铁下垂易感性相关的基因。在体外,ACSL4的高表达与人HCC细胞系铁下垂敏感性的增加有关。最后,单细胞rna测序显示小鼠MASH-HCC模型免疫细胞中ACSL4表达升高,提示ACSL4在塑造肿瘤免疫微环境中的作用。总的来说,本报告提供了新的见解脂质代谢景观和铁下垂敏感性的新型MASH-HCC治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of Long Chain Acyl-CoA Synthetases in MASH-driven Hepatocellular Carcinoma and Ferroptosis.

Metabolic-associated steatohepatitis-driven hepatocellular carcinoma (MASH-HCC) incidence is rapidly rising worldwide. Lipid metabolic reprogramming is a hallmark of solid tumors to satisfy cancer high metabolic demand. However, it may confer sensitivity to ferroptosis, a cell death mode driven by iron-dependent lipid peroxidation. In this report, we describe the lipid metabolic landscape in MASH-HCC and characterize long chain acyl-CoA synthetases (ACSLs), a family of enzymes involved in synthesis of cellular lipids. Bulk RNA-sequencing, single-cell RNA-sequencing, spatial transcriptomics and immunohistochemistry analyses of human MASH-HCC were integrated to identify differentially expressed lipid metabolism genes. Ferroptosis in vitro was assessed in human HCC cell lines. A characterization of ACSLs was also conducted at the single-cell level in a diet-induced experimental murine model of MASH-HCC. Our analysis revealed that in human MASH-HCC, ACSLs exhibit a heterogeneous expression, with ACSL4 notably enriched in tumor tissues, contrasting with ACSL5 upregulation in non-cancerous MASH. We identified a unique lipid metabolic gene signature of MASH-HCC, which included genes associated with ferroptosis vulnerability. In vitro, high ACSL4 expression was associated with increased ferroptosis sensitivity in human HCC cell lines. Lastly, single-cell RNA-sequencing revealed elevated ACSL4 expression in immune cells in a murine MASH-HCC model, suggesting a role of ACSL4 in shaping the tumor immune microenvironment. Overall, this report offers new insights into lipid metabolic landscape and ferroptosis sensitivity for novel MASH-HCC treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信