{"title":"蛋白质病变中的蛋白质抑制网络:机制和相互联系。","authors":"Dariusz Pytel, Jody Fromm Longo","doi":"10.1016/j.ajpath.2025.07.011","DOIUrl":null,"url":null,"abstract":"<p><p>Proteinopathies are neurodegenerative disorders that are characterized by accumulation of misfolded toxic protein aggregates that lead to synaptic and neuronal dysfunction. Although genetically, clinically, and pathologically distinct, a common feature of these diseases is disruption of protein homeostasis (proteostasis), which causes accumulation of misfolded proteins. The machinery mediating proteostasis exquisitely balances and interlaces protein synthesis, protein folding and trafficking, and protein degradation processes within the proteostasis network to maintain homeostasis. The proteostasis network governs a functional and dynamic proteome by modulating the timing, location, and stoichiometry of protein expression, surveillance, and maintenance of protein folding and removal of misfolded or excess proteins. Although a functional proteome is essential for the health of all cell types, this is especially true for neurons, which are prone to enhanced cellular stress. Aging is the most important risk factor for proteostasis decline and the development of proteinopathies. However, germline and somatic mutations can also functionally impair components of the proteostasis network. Post-mitotic cells, particularly neurons, are rendered further susceptible to proteostasis dysfunction because of their extended lifespan. This review discusses the interconnections between the functional components mediating proteostasis in neuronal cells and how aberrations in proteostasis contribute to neuronal dysfunction and disease.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Proteostasis Network in Proteinopathies: Mechanisms and Interconnections.\",\"authors\":\"Dariusz Pytel, Jody Fromm Longo\",\"doi\":\"10.1016/j.ajpath.2025.07.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteinopathies are neurodegenerative disorders that are characterized by accumulation of misfolded toxic protein aggregates that lead to synaptic and neuronal dysfunction. Although genetically, clinically, and pathologically distinct, a common feature of these diseases is disruption of protein homeostasis (proteostasis), which causes accumulation of misfolded proteins. The machinery mediating proteostasis exquisitely balances and interlaces protein synthesis, protein folding and trafficking, and protein degradation processes within the proteostasis network to maintain homeostasis. The proteostasis network governs a functional and dynamic proteome by modulating the timing, location, and stoichiometry of protein expression, surveillance, and maintenance of protein folding and removal of misfolded or excess proteins. Although a functional proteome is essential for the health of all cell types, this is especially true for neurons, which are prone to enhanced cellular stress. Aging is the most important risk factor for proteostasis decline and the development of proteinopathies. However, germline and somatic mutations can also functionally impair components of the proteostasis network. Post-mitotic cells, particularly neurons, are rendered further susceptible to proteostasis dysfunction because of their extended lifespan. This review discusses the interconnections between the functional components mediating proteostasis in neuronal cells and how aberrations in proteostasis contribute to neuronal dysfunction and disease.</p>\",\"PeriodicalId\":7623,\"journal\":{\"name\":\"American Journal of Pathology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajpath.2025.07.011\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2025.07.011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
The Proteostasis Network in Proteinopathies: Mechanisms and Interconnections.
Proteinopathies are neurodegenerative disorders that are characterized by accumulation of misfolded toxic protein aggregates that lead to synaptic and neuronal dysfunction. Although genetically, clinically, and pathologically distinct, a common feature of these diseases is disruption of protein homeostasis (proteostasis), which causes accumulation of misfolded proteins. The machinery mediating proteostasis exquisitely balances and interlaces protein synthesis, protein folding and trafficking, and protein degradation processes within the proteostasis network to maintain homeostasis. The proteostasis network governs a functional and dynamic proteome by modulating the timing, location, and stoichiometry of protein expression, surveillance, and maintenance of protein folding and removal of misfolded or excess proteins. Although a functional proteome is essential for the health of all cell types, this is especially true for neurons, which are prone to enhanced cellular stress. Aging is the most important risk factor for proteostasis decline and the development of proteinopathies. However, germline and somatic mutations can also functionally impair components of the proteostasis network. Post-mitotic cells, particularly neurons, are rendered further susceptible to proteostasis dysfunction because of their extended lifespan. This review discusses the interconnections between the functional components mediating proteostasis in neuronal cells and how aberrations in proteostasis contribute to neuronal dysfunction and disease.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.