Georgios Kontellas, David J Studholme, Mark van der Giezen, David J Timson, Jennifer A Littlechild, Michail N Isupov
{"title":"肝片形吸虫三磷酸异构体酶:高分辨率晶体结构作为药物靶点。","authors":"Georgios Kontellas, David J Studholme, Mark van der Giezen, David J Timson, Jennifer A Littlechild, Michail N Isupov","doi":"10.1107/S2053230X25006454","DOIUrl":null,"url":null,"abstract":"<p><p>The trematode liver fluke Fasciola hepatica causes the neglected tropical disease fascioliasis in humans and is associated with significant losses in agricultural industry due to reduced animal productivity. Triosephosphate isomerase (TPI) is a glycolytic enzyme that has been researched as a drug target for various parasites, including F. hepatica. The high-resolution crystal structure of F. hepatica TPI (FhTPI) has been solved at 1.51 Å resolution in its monoclinic form. The structure has been used to perform molecular-docking studies with the most successful fasciolocide triclabendazole (TCBZ), which has recently been suggested to target FhTPI. Two FhTPI residues, Lys50 and Asp51, are located at the dimer interface and are found in close proximity to the docked TCBZ. These residues are not conserved in mammalian hosts.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"81 Pt 9","pages":"381-387"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400196/pdf/","citationCount":"0","resultStr":"{\"title\":\"Triosephosphate isomerase from Fasciola hepatica: high-resolution crystal structure as a drug target.\",\"authors\":\"Georgios Kontellas, David J Studholme, Mark van der Giezen, David J Timson, Jennifer A Littlechild, Michail N Isupov\",\"doi\":\"10.1107/S2053230X25006454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The trematode liver fluke Fasciola hepatica causes the neglected tropical disease fascioliasis in humans and is associated with significant losses in agricultural industry due to reduced animal productivity. Triosephosphate isomerase (TPI) is a glycolytic enzyme that has been researched as a drug target for various parasites, including F. hepatica. The high-resolution crystal structure of F. hepatica TPI (FhTPI) has been solved at 1.51 Å resolution in its monoclinic form. The structure has been used to perform molecular-docking studies with the most successful fasciolocide triclabendazole (TCBZ), which has recently been suggested to target FhTPI. Two FhTPI residues, Lys50 and Asp51, are located at the dimer interface and are found in close proximity to the docked TCBZ. These residues are not conserved in mammalian hosts.</p>\",\"PeriodicalId\":7029,\"journal\":{\"name\":\"Acta crystallographica. Section F, Structural biology communications\",\"volume\":\"81 Pt 9\",\"pages\":\"381-387\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400196/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica. Section F, Structural biology communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053230X25006454\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2053230X25006454","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Triosephosphate isomerase from Fasciola hepatica: high-resolution crystal structure as a drug target.
The trematode liver fluke Fasciola hepatica causes the neglected tropical disease fascioliasis in humans and is associated with significant losses in agricultural industry due to reduced animal productivity. Triosephosphate isomerase (TPI) is a glycolytic enzyme that has been researched as a drug target for various parasites, including F. hepatica. The high-resolution crystal structure of F. hepatica TPI (FhTPI) has been solved at 1.51 Å resolution in its monoclinic form. The structure has been used to perform molecular-docking studies with the most successful fasciolocide triclabendazole (TCBZ), which has recently been suggested to target FhTPI. Two FhTPI residues, Lys50 and Asp51, are located at the dimer interface and are found in close proximity to the docked TCBZ. These residues are not conserved in mammalian hosts.
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.