肝片形吸虫三磷酸异构体酶:高分辨率晶体结构作为药物靶点。

IF 1.1 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Georgios Kontellas, David J Studholme, Mark van der Giezen, David J Timson, Jennifer A Littlechild, Michail N Isupov
{"title":"肝片形吸虫三磷酸异构体酶:高分辨率晶体结构作为药物靶点。","authors":"Georgios Kontellas, David J Studholme, Mark van der Giezen, David J Timson, Jennifer A Littlechild, Michail N Isupov","doi":"10.1107/S2053230X25006454","DOIUrl":null,"url":null,"abstract":"<p><p>The trematode liver fluke Fasciola hepatica causes the neglected tropical disease fascioliasis in humans and is associated with significant losses in agricultural industry due to reduced animal productivity. Triosephosphate isomerase (TPI) is a glycolytic enzyme that has been researched as a drug target for various parasites, including F. hepatica. The high-resolution crystal structure of F. hepatica TPI (FhTPI) has been solved at 1.51 Å resolution in its monoclinic form. The structure has been used to perform molecular-docking studies with the most successful fasciolocide triclabendazole (TCBZ), which has recently been suggested to target FhTPI. Two FhTPI residues, Lys50 and Asp51, are located at the dimer interface and are found in close proximity to the docked TCBZ. These residues are not conserved in mammalian hosts.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"81 Pt 9","pages":"381-387"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400196/pdf/","citationCount":"0","resultStr":"{\"title\":\"Triosephosphate isomerase from Fasciola hepatica: high-resolution crystal structure as a drug target.\",\"authors\":\"Georgios Kontellas, David J Studholme, Mark van der Giezen, David J Timson, Jennifer A Littlechild, Michail N Isupov\",\"doi\":\"10.1107/S2053230X25006454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The trematode liver fluke Fasciola hepatica causes the neglected tropical disease fascioliasis in humans and is associated with significant losses in agricultural industry due to reduced animal productivity. Triosephosphate isomerase (TPI) is a glycolytic enzyme that has been researched as a drug target for various parasites, including F. hepatica. The high-resolution crystal structure of F. hepatica TPI (FhTPI) has been solved at 1.51 Å resolution in its monoclinic form. The structure has been used to perform molecular-docking studies with the most successful fasciolocide triclabendazole (TCBZ), which has recently been suggested to target FhTPI. Two FhTPI residues, Lys50 and Asp51, are located at the dimer interface and are found in close proximity to the docked TCBZ. These residues are not conserved in mammalian hosts.</p>\",\"PeriodicalId\":7029,\"journal\":{\"name\":\"Acta crystallographica. Section F, Structural biology communications\",\"volume\":\"81 Pt 9\",\"pages\":\"381-387\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400196/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica. Section F, Structural biology communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053230X25006454\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2053230X25006454","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

吸虫肝吸虫肝片吸虫病在人类中引起被忽视的热带病片吸虫病,并由于动物生产力下降而与农业的重大损失有关。三磷酸异构体酶(Triosephosphate isomerase, TPI)是一种糖酵解酶,已被研究作为多种寄生虫的药物靶点,包括肝单胞菌。肝芽胞杆菌TPI (FhTPI)的高分辨率晶体结构已在1.51 Å分辨率下以单斜晶型求解。该结构已被用于与最成功的筋膜虫灭菌剂三氯苄唑(TCBZ)进行分子对接研究,TCBZ最近被建议靶向FhTPI。两个FhTPI残基Lys50和Asp51位于二聚体界面,靠近对接的TCBZ。这些残基在哺乳动物宿主中不保守。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triosephosphate isomerase from Fasciola hepatica: high-resolution crystal structure as a drug target.

The trematode liver fluke Fasciola hepatica causes the neglected tropical disease fascioliasis in humans and is associated with significant losses in agricultural industry due to reduced animal productivity. Triosephosphate isomerase (TPI) is a glycolytic enzyme that has been researched as a drug target for various parasites, including F. hepatica. The high-resolution crystal structure of F. hepatica TPI (FhTPI) has been solved at 1.51 Å resolution in its monoclinic form. The structure has been used to perform molecular-docking studies with the most successful fasciolocide triclabendazole (TCBZ), which has recently been suggested to target FhTPI. Two FhTPI residues, Lys50 and Asp51, are located at the dimer interface and are found in close proximity to the docked TCBZ. These residues are not conserved in mammalian hosts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta crystallographica. Section F, Structural biology communications
Acta crystallographica. Section F, Structural biology communications BIOCHEMICAL RESEARCH METHODSBIOCHEMISTRY &-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.90
自引率
0.00%
发文量
95
期刊介绍: Acta Crystallographica Section F is a rapid structural biology communications journal. Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal. The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles. Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信