结构和机制的见解,双重激活的cagrilintide在amylin和降钙素受体。

IF 8.4 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yi-Min Gu, Qing-Ning Yuan, Xin Li, Qian He, H Eric Xu, Li-Hua Zhao
{"title":"结构和机制的见解,双重激活的cagrilintide在amylin和降钙素受体。","authors":"Yi-Min Gu, Qing-Ning Yuan, Xin Li, Qian He, H Eric Xu, Li-Hua Zhao","doi":"10.1038/s41401-025-01635-2","DOIUrl":null,"url":null,"abstract":"<p><p>The global obesity epidemic and its associated metabolic disorders urgently require more effective therapeutic interventions, particularly multi-pathway targeting therapies. Cagrilintide (Cagri), functioning as a dual amylin receptor (AMYRs) and calcitonin receptor (CTR) agonist (DACRA), demonstrates significant efficacy in obesity treatment, although its structural activation mechanism remains unclear. This study elucidates the non-selective activation mechanism by determining cryo-EM structures of Cagri bound to AMY<sub>1</sub>R-G<sub>s</sub> and CTR-G<sub>s</sub> complexes. Cagri adopts similar \"bypass\" binding modes in both receptors, which is distinct from other existing DACRAs that primarily achieve extended half-life through N-terminal lipid modification. Key molecular features include the F23<sup>Cagri</sup> residue anchoring the peptide at the receptor transmembrane (TM) bundle level and the micelle, an E14-R17 intramolecular salt bridge enhancing helical stability, and C-terminal P37<sup>Cagri</sup> interaction with the receptor ECD. These features collectively enable non-specific binding and activation across different receptors. Both structural and functional analyses revealed Cagri's non-selective activation of G<sub>s</sub> signaling pathways through CTR and AMY<sub>1</sub>R. These findings provide a comprehensive structural framework for developing next-generation anti-obesity drugs based on dual receptor activation mechanisms.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and mechanistic insights into dual activation of cagrilintide in amylin and calcitonin receptors.\",\"authors\":\"Yi-Min Gu, Qing-Ning Yuan, Xin Li, Qian He, H Eric Xu, Li-Hua Zhao\",\"doi\":\"10.1038/s41401-025-01635-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The global obesity epidemic and its associated metabolic disorders urgently require more effective therapeutic interventions, particularly multi-pathway targeting therapies. Cagrilintide (Cagri), functioning as a dual amylin receptor (AMYRs) and calcitonin receptor (CTR) agonist (DACRA), demonstrates significant efficacy in obesity treatment, although its structural activation mechanism remains unclear. This study elucidates the non-selective activation mechanism by determining cryo-EM structures of Cagri bound to AMY<sub>1</sub>R-G<sub>s</sub> and CTR-G<sub>s</sub> complexes. Cagri adopts similar \\\"bypass\\\" binding modes in both receptors, which is distinct from other existing DACRAs that primarily achieve extended half-life through N-terminal lipid modification. Key molecular features include the F23<sup>Cagri</sup> residue anchoring the peptide at the receptor transmembrane (TM) bundle level and the micelle, an E14-R17 intramolecular salt bridge enhancing helical stability, and C-terminal P37<sup>Cagri</sup> interaction with the receptor ECD. These features collectively enable non-specific binding and activation across different receptors. Both structural and functional analyses revealed Cagri's non-selective activation of G<sub>s</sub> signaling pathways through CTR and AMY<sub>1</sub>R. These findings provide a comprehensive structural framework for developing next-generation anti-obesity drugs based on dual receptor activation mechanisms.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-025-01635-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01635-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全球肥胖流行及其相关代谢紊乱迫切需要更有效的治疗干预措施,特别是多途径靶向治疗。Cagrilintide (Cagri)作为双amyr受体(AMYRs)和降钙素受体(CTR)激动剂(DACRA),在肥胖治疗中显示出显著的疗效,尽管其结构激活机制尚不清楚。本研究通过测定与AMY1R-Gs和cr - gs复合物结合的Cagri的低温电镜结构,阐明了其非选择性活化机制。Cagri在两种受体中均采用类似的“旁路”结合模式,这与现有的其他主要通过n端脂质修饰来延长半衰期的DACRAs不同。关键的分子特征包括F23Cagri残基将肽锚定在受体跨膜(TM)束和胶束水平,E14-R17分子内盐桥增强螺旋稳定性,c端P37Cagri与受体ECD相互作用。这些特征共同使不同受体之间的非特异性结合和激活成为可能。结构和功能分析显示,Cagri通过CTR和AMY1R非选择性激活Gs信号通路。这些发现为开发基于双受体激活机制的下一代抗肥胖药物提供了一个全面的结构框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural and mechanistic insights into dual activation of cagrilintide in amylin and calcitonin receptors.

The global obesity epidemic and its associated metabolic disorders urgently require more effective therapeutic interventions, particularly multi-pathway targeting therapies. Cagrilintide (Cagri), functioning as a dual amylin receptor (AMYRs) and calcitonin receptor (CTR) agonist (DACRA), demonstrates significant efficacy in obesity treatment, although its structural activation mechanism remains unclear. This study elucidates the non-selective activation mechanism by determining cryo-EM structures of Cagri bound to AMY1R-Gs and CTR-Gs complexes. Cagri adopts similar "bypass" binding modes in both receptors, which is distinct from other existing DACRAs that primarily achieve extended half-life through N-terminal lipid modification. Key molecular features include the F23Cagri residue anchoring the peptide at the receptor transmembrane (TM) bundle level and the micelle, an E14-R17 intramolecular salt bridge enhancing helical stability, and C-terminal P37Cagri interaction with the receptor ECD. These features collectively enable non-specific binding and activation across different receptors. Both structural and functional analyses revealed Cagri's non-selective activation of Gs signaling pathways through CTR and AMY1R. These findings provide a comprehensive structural framework for developing next-generation anti-obesity drugs based on dual receptor activation mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信