Lena-Sophie Scholl, Antonia F Demleitner, Jenny Riedel, Seren Adachi, Lisa Neuenroth, Clara Meijs, Laura Tzeplaeff, Lucas Caldi Gomes, Ana Galhoz, Isabell Cordts, Christof Lenz, Michael Menden, Paul Lingor
{"title":"肌萎缩性侧索硬化症患者泪液来源蛋白生物标志物特征的鉴定和验证。","authors":"Lena-Sophie Scholl, Antonia F Demleitner, Jenny Riedel, Seren Adachi, Lisa Neuenroth, Clara Meijs, Laura Tzeplaeff, Lucas Caldi Gomes, Ana Galhoz, Isabell Cordts, Christof Lenz, Michael Menden, Paul Lingor","doi":"10.1186/s40478-025-02109-6","DOIUrl":null,"url":null,"abstract":"<p><p>The diagnosis of Amyotrophic Lateral Sclerosis (ALS) remains challenging, particularly in early stages, where characteristic symptoms may be subtle and nonspecific. The development of disease-specific and clinically validated biomarkers is crucial to optimize diagnosis. Here, we explored tear fluid (TF) as a promising ALS biomarker source, given its accessibility, anatomical proximity to the brainstem as an important site of neurodegeneration, and proven discriminative power in other neurodegenerative diseases. Using a discovery approach, we profiled protein abundance in TF of ALS patients (n = 49) and controls (n = 54) via data-independent acquisition mass spectrometry. Biostatistical analysis and machine learning identified differential protein abundance and pathways in ALS, leading to a protein signature. These proteins were validated by Western blot in an independent cohort (ALS n = 51; controls n = 52), and their discriminatory performance was assessed in-silico employing machine learning. 876 proteins were consistently detected in TF, with 106 differentially abundant in ALS. A six-protein signature, including CRYM, PFKL, CAPZA2, ALDH16A1, SERPINC1, and HP, exhibited discriminatory potential. We replicated significant differences of SERPINC1 and HP levels between ALS and controls across the cohorts, and their combination yielded the best in-silico performance. Overall, this investigation of TF proteomics in ALS and controls revealed dysregulated proteins and pathways, highlighting inflammation as a key disease feature, strengthening the potential of TF as a source for biomarker discovery.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"187"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12403336/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification and validation of a tear fluid-derived protein biomarker signature in patients with amyotrophic lateral sclerosis.\",\"authors\":\"Lena-Sophie Scholl, Antonia F Demleitner, Jenny Riedel, Seren Adachi, Lisa Neuenroth, Clara Meijs, Laura Tzeplaeff, Lucas Caldi Gomes, Ana Galhoz, Isabell Cordts, Christof Lenz, Michael Menden, Paul Lingor\",\"doi\":\"10.1186/s40478-025-02109-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The diagnosis of Amyotrophic Lateral Sclerosis (ALS) remains challenging, particularly in early stages, where characteristic symptoms may be subtle and nonspecific. The development of disease-specific and clinically validated biomarkers is crucial to optimize diagnosis. Here, we explored tear fluid (TF) as a promising ALS biomarker source, given its accessibility, anatomical proximity to the brainstem as an important site of neurodegeneration, and proven discriminative power in other neurodegenerative diseases. Using a discovery approach, we profiled protein abundance in TF of ALS patients (n = 49) and controls (n = 54) via data-independent acquisition mass spectrometry. Biostatistical analysis and machine learning identified differential protein abundance and pathways in ALS, leading to a protein signature. These proteins were validated by Western blot in an independent cohort (ALS n = 51; controls n = 52), and their discriminatory performance was assessed in-silico employing machine learning. 876 proteins were consistently detected in TF, with 106 differentially abundant in ALS. A six-protein signature, including CRYM, PFKL, CAPZA2, ALDH16A1, SERPINC1, and HP, exhibited discriminatory potential. We replicated significant differences of SERPINC1 and HP levels between ALS and controls across the cohorts, and their combination yielded the best in-silico performance. Overall, this investigation of TF proteomics in ALS and controls revealed dysregulated proteins and pathways, highlighting inflammation as a key disease feature, strengthening the potential of TF as a source for biomarker discovery.</p>\",\"PeriodicalId\":6914,\"journal\":{\"name\":\"Acta Neuropathologica Communications\",\"volume\":\"13 1\",\"pages\":\"187\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12403336/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropathologica Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40478-025-02109-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-02109-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Identification and validation of a tear fluid-derived protein biomarker signature in patients with amyotrophic lateral sclerosis.
The diagnosis of Amyotrophic Lateral Sclerosis (ALS) remains challenging, particularly in early stages, where characteristic symptoms may be subtle and nonspecific. The development of disease-specific and clinically validated biomarkers is crucial to optimize diagnosis. Here, we explored tear fluid (TF) as a promising ALS biomarker source, given its accessibility, anatomical proximity to the brainstem as an important site of neurodegeneration, and proven discriminative power in other neurodegenerative diseases. Using a discovery approach, we profiled protein abundance in TF of ALS patients (n = 49) and controls (n = 54) via data-independent acquisition mass spectrometry. Biostatistical analysis and machine learning identified differential protein abundance and pathways in ALS, leading to a protein signature. These proteins were validated by Western blot in an independent cohort (ALS n = 51; controls n = 52), and their discriminatory performance was assessed in-silico employing machine learning. 876 proteins were consistently detected in TF, with 106 differentially abundant in ALS. A six-protein signature, including CRYM, PFKL, CAPZA2, ALDH16A1, SERPINC1, and HP, exhibited discriminatory potential. We replicated significant differences of SERPINC1 and HP levels between ALS and controls across the cohorts, and their combination yielded the best in-silico performance. Overall, this investigation of TF proteomics in ALS and controls revealed dysregulated proteins and pathways, highlighting inflammation as a key disease feature, strengthening the potential of TF as a source for biomarker discovery.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.