异连体肌氨酸抑制线粒体自噬并使T细胞恶性肿瘤对sting介导的NK清除增敏。

IF 8.4 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiao Ge, Guang-Ming Yang, Xiao-Long Zhang, Jing Cao, Ying-Jie Qing, San-Bing Shen, Yang Pan, Po Hu
{"title":"异连体肌氨酸抑制线粒体自噬并使T细胞恶性肿瘤对sting介导的NK清除增敏。","authors":"Xiao Ge, Guang-Ming Yang, Xiao-Long Zhang, Jing Cao, Ying-Jie Qing, San-Bing Shen, Yang Pan, Po Hu","doi":"10.1038/s41401-025-01636-1","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial DNA (mtDNA) damage and accumulation activate the cGAS-STING DNA-sensing pathway, which promotes immune clearance of tumor cells. Maintenance of the cytosolic level of mtDNA is key to sustain immune activation. T cell malignancies (T-CMs) are a general name of diseases with abnormal clonal proliferation of T lymphocytes at various stages. Immunotherapy of T-CMs is challenged by the lack of specific antigens to discriminate T-CMs from normal T cells. As intrinsic STING activation can promote the clearance of T-CMs by immune cells, we herein explored whether isoliensinine (IsoL), a natural compound from Nelumbinis Plumula could enhance NK clearance by mtDNA-mediated immune responses in tumor cells. To investigate whether IsoL modulated immune recognition and clearance of T-CMs, we pre-treated three T-CM cell lines (Jurkat, Molt4 and Hut102) with IsoL then co-cultured with NK-92MI cells. We showed that IsoL pre-treatment promoted cytosolic mtDNA accumulation by inducing ROS-dependent mitochondrial damage and inhibiting mitophagy via peroxiredoxin 1 (PRDX1), an antioxidant enzyme. Loss of PRDX1 in T-CMs also induced ROS-dependent mitochondrial DNA damage, and blocked mitophagy by preventing accumulation of mature PINK1, which was required to initiate mitophagy via recruiting Parkin to the damaged mitochondria. Remarkably, IsoL could induce expression of activating ligands in vitro, enhance NK cell infiltrations, and increase apoptosis of T-CMs. Moreover, we demonstrated that IsoL could sensitize T-CMs for NK clearance in vitro and in vivo. These results suggest that IsoL could be a potential therapeutic agent to enhance immune therapy of T-CMs.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isoliensinine inhibits mitophagy and sensitizes T cell malignancies for STING-mediated NK clearance.\",\"authors\":\"Xiao Ge, Guang-Ming Yang, Xiao-Long Zhang, Jing Cao, Ying-Jie Qing, San-Bing Shen, Yang Pan, Po Hu\",\"doi\":\"10.1038/s41401-025-01636-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial DNA (mtDNA) damage and accumulation activate the cGAS-STING DNA-sensing pathway, which promotes immune clearance of tumor cells. Maintenance of the cytosolic level of mtDNA is key to sustain immune activation. T cell malignancies (T-CMs) are a general name of diseases with abnormal clonal proliferation of T lymphocytes at various stages. Immunotherapy of T-CMs is challenged by the lack of specific antigens to discriminate T-CMs from normal T cells. As intrinsic STING activation can promote the clearance of T-CMs by immune cells, we herein explored whether isoliensinine (IsoL), a natural compound from Nelumbinis Plumula could enhance NK clearance by mtDNA-mediated immune responses in tumor cells. To investigate whether IsoL modulated immune recognition and clearance of T-CMs, we pre-treated three T-CM cell lines (Jurkat, Molt4 and Hut102) with IsoL then co-cultured with NK-92MI cells. We showed that IsoL pre-treatment promoted cytosolic mtDNA accumulation by inducing ROS-dependent mitochondrial damage and inhibiting mitophagy via peroxiredoxin 1 (PRDX1), an antioxidant enzyme. Loss of PRDX1 in T-CMs also induced ROS-dependent mitochondrial DNA damage, and blocked mitophagy by preventing accumulation of mature PINK1, which was required to initiate mitophagy via recruiting Parkin to the damaged mitochondria. Remarkably, IsoL could induce expression of activating ligands in vitro, enhance NK cell infiltrations, and increase apoptosis of T-CMs. Moreover, we demonstrated that IsoL could sensitize T-CMs for NK clearance in vitro and in vivo. These results suggest that IsoL could be a potential therapeutic agent to enhance immune therapy of T-CMs.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-025-01636-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01636-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体DNA (mtDNA)损伤和积累激活cGAS-STING DNA传感通路,促进肿瘤细胞的免疫清除。维持细胞内mtDNA水平是维持免疫激活的关键。T细胞恶性肿瘤(T- cms)是T淋巴细胞在不同阶段异常克隆增殖的疾病的总称。T- cms的免疫治疗受到缺乏特异性抗原来区分T- cms与正常T细胞的挑战。由于内源性STING激活可以促进免疫细胞对T-CMs的清除,我们在此研究了荷兰花天然化合物异连体氨酸(IsoL)是否可以通过mtdna介导的免疫反应增强肿瘤细胞对NK的清除。为了研究IsoL是否调节T-CM的免疫识别和清除,我们用IsoL预处理了3株T-CM细胞系(Jurkat、Molt4和Hut102),然后与NK-92MI细胞共培养。我们发现,IsoL预处理通过诱导ros依赖性线粒体损伤和通过抗氧化酶过氧化物还蛋白1 (PRDX1)抑制线粒体自噬,促进了细胞质内mtDNA的积累。T-CMs中PRDX1的缺失还会诱导ros依赖性线粒体DNA损伤,并通过阻止成熟PINK1的积累来阻断线粒体自噬,而成熟PINK1是通过向受损线粒体募集Parkin来启动线粒体自噬所必需的。IsoL可以诱导体外活化配体的表达,增强NK细胞浸润,增加T-CMs的凋亡。此外,我们证明了IsoL可以使T-CMs在体外和体内对NK清除增敏。这些结果提示IsoL可能是一种潜在的增强T-CMs免疫治疗的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isoliensinine inhibits mitophagy and sensitizes T cell malignancies for STING-mediated NK clearance.

Mitochondrial DNA (mtDNA) damage and accumulation activate the cGAS-STING DNA-sensing pathway, which promotes immune clearance of tumor cells. Maintenance of the cytosolic level of mtDNA is key to sustain immune activation. T cell malignancies (T-CMs) are a general name of diseases with abnormal clonal proliferation of T lymphocytes at various stages. Immunotherapy of T-CMs is challenged by the lack of specific antigens to discriminate T-CMs from normal T cells. As intrinsic STING activation can promote the clearance of T-CMs by immune cells, we herein explored whether isoliensinine (IsoL), a natural compound from Nelumbinis Plumula could enhance NK clearance by mtDNA-mediated immune responses in tumor cells. To investigate whether IsoL modulated immune recognition and clearance of T-CMs, we pre-treated three T-CM cell lines (Jurkat, Molt4 and Hut102) with IsoL then co-cultured with NK-92MI cells. We showed that IsoL pre-treatment promoted cytosolic mtDNA accumulation by inducing ROS-dependent mitochondrial damage and inhibiting mitophagy via peroxiredoxin 1 (PRDX1), an antioxidant enzyme. Loss of PRDX1 in T-CMs also induced ROS-dependent mitochondrial DNA damage, and blocked mitophagy by preventing accumulation of mature PINK1, which was required to initiate mitophagy via recruiting Parkin to the damaged mitochondria. Remarkably, IsoL could induce expression of activating ligands in vitro, enhance NK cell infiltrations, and increase apoptosis of T-CMs. Moreover, we demonstrated that IsoL could sensitize T-CMs for NK clearance in vitro and in vivo. These results suggest that IsoL could be a potential therapeutic agent to enhance immune therapy of T-CMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信