{"title":"磷酸离子功能化Ni(OH)2/Ni/MoO2复合材料增强碱性析氢。","authors":"Yuyang Liu, Huiping You, Tiancheng Geng, Jing Zhang, Enlai Hu, Yining Zhang, Zhongwei Chen","doi":"10.1016/j.jcis.2025.138724","DOIUrl":null,"url":null,"abstract":"<p><p>The development of efficient electrocatalysts for hydrogen evolution reaction (HER) is important in advancing sustainable energy technologies. This work introduces a phosphate ion modified Ni(OH)<sub>2</sub>/Ni/MoO<sub>2</sub> (PNNM) composite, elaborately constructed by a one-pot electrodeposition method. The integration of heterostructure engineering and ion modification strategies significantly endows the composite with remarkable electrocatalytic performance. The prepared PNNM has excellent HER activity, with a low overpotential of 35 mV to achieve a current density of 10 mA cm<sup>-2</sup> and a favorable Tafel slope of 59.5 mV dec<sup>-1</sup>. Meanwhile, PNNM also possesses prominently long-term durability with the current density retention rate of 90.1 % after 240 h. In-situ Raman, electrochemical analysis, and theoretical calculation results reveal that the enhanced HER activity of PNNM results from the moderated hydrogen adsorption strength, robust water adsorption, and accelerated water dissociation process. This study highlights the potential of PNNM as a promising candidate for scalable alkaline hydrogen generation, offering significant advancements in renewable energy applications.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"701 ","pages":"138724"},"PeriodicalIF":9.7000,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphate ion functionalized Ni(OH)<sub>2</sub>/Ni/MoO<sub>2</sub> composite for enhanced alkaline hydrogen evolution.\",\"authors\":\"Yuyang Liu, Huiping You, Tiancheng Geng, Jing Zhang, Enlai Hu, Yining Zhang, Zhongwei Chen\",\"doi\":\"10.1016/j.jcis.2025.138724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of efficient electrocatalysts for hydrogen evolution reaction (HER) is important in advancing sustainable energy technologies. This work introduces a phosphate ion modified Ni(OH)<sub>2</sub>/Ni/MoO<sub>2</sub> (PNNM) composite, elaborately constructed by a one-pot electrodeposition method. The integration of heterostructure engineering and ion modification strategies significantly endows the composite with remarkable electrocatalytic performance. The prepared PNNM has excellent HER activity, with a low overpotential of 35 mV to achieve a current density of 10 mA cm<sup>-2</sup> and a favorable Tafel slope of 59.5 mV dec<sup>-1</sup>. Meanwhile, PNNM also possesses prominently long-term durability with the current density retention rate of 90.1 % after 240 h. In-situ Raman, electrochemical analysis, and theoretical calculation results reveal that the enhanced HER activity of PNNM results from the moderated hydrogen adsorption strength, robust water adsorption, and accelerated water dissociation process. This study highlights the potential of PNNM as a promising candidate for scalable alkaline hydrogen generation, offering significant advancements in renewable energy applications.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"701 \",\"pages\":\"138724\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2026-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2025.138724\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.138724","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
开发高效析氢电催化剂对推进可持续能源技术具有重要意义。本文介绍了一种磷酸离子修饰的Ni(OH)2/Ni/MoO2 (PNNM)复合材料,采用一锅电沉积法制备。异质结构工程和离子修饰策略的结合显著地赋予了复合材料卓越的电催化性能。制备的PNNM具有优异的HER活性,其过电位为35 mV,电流密度为10 mA cm-2, Tafel斜率为59.5 mV / dec1。同时,PNNM还具有显著的长期耐久性,240 h后电流密度保持率为90.1%。原位拉曼、电化学分析和理论计算结果表明,PNNM的HER活性增强是由于其氢吸附强度减弱、水吸附强度增强和水解离过程加快。这项研究强调了PNNM作为可扩展碱性制氢的有前途的候选物的潜力,为可再生能源的应用提供了重大进展。
Phosphate ion functionalized Ni(OH)2/Ni/MoO2 composite for enhanced alkaline hydrogen evolution.
The development of efficient electrocatalysts for hydrogen evolution reaction (HER) is important in advancing sustainable energy technologies. This work introduces a phosphate ion modified Ni(OH)2/Ni/MoO2 (PNNM) composite, elaborately constructed by a one-pot electrodeposition method. The integration of heterostructure engineering and ion modification strategies significantly endows the composite with remarkable electrocatalytic performance. The prepared PNNM has excellent HER activity, with a low overpotential of 35 mV to achieve a current density of 10 mA cm-2 and a favorable Tafel slope of 59.5 mV dec-1. Meanwhile, PNNM also possesses prominently long-term durability with the current density retention rate of 90.1 % after 240 h. In-situ Raman, electrochemical analysis, and theoretical calculation results reveal that the enhanced HER activity of PNNM results from the moderated hydrogen adsorption strength, robust water adsorption, and accelerated water dissociation process. This study highlights the potential of PNNM as a promising candidate for scalable alkaline hydrogen generation, offering significant advancements in renewable energy applications.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies