硅基阳极上富li3po4固体电解质界面相增强锂离子在锂电池中的输运和界面稳定性。

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2026-01-01 Epub Date: 2025-08-16 DOI:10.1016/j.jcis.2025.138710
Guang Ma, Chong Xu, Sai Che, Dongyuan Zhang, Shuang Liu, Junjie Fu, Gong Cheng, Ye Wang, Yang Sun, Chao Dong, Wenyue Gao, Yongfeng Li
{"title":"硅基阳极上富li3po4固体电解质界面相增强锂离子在锂电池中的输运和界面稳定性。","authors":"Guang Ma, Chong Xu, Sai Che, Dongyuan Zhang, Shuang Liu, Junjie Fu, Gong Cheng, Ye Wang, Yang Sun, Chao Dong, Wenyue Gao, Yongfeng Li","doi":"10.1016/j.jcis.2025.138710","DOIUrl":null,"url":null,"abstract":"<p><p>The structure and composition of the solid electrolyte interphase (SEI) exerts a significant influence on the fast-charging capability and stability of lithium-ion batteries (LIBs). However, elucidating the design principles governing anode interfacial structures and revealing the kinetics and mechanisms of Li<sup>+</sup> transport remain challenging. SEI layer. Herein, we present an efficient synthesis strategy for fabricating LIBs anodes consisting of silicon nanoparticles coated with a Li<sub>3</sub>PO<sub>4</sub>-modified carbon shell (Si@C@LPO). Through a combination of comprehensive experimental investigations and density functional theory (DFT) calculations, we elucidate the influence of SEI layer enriched with various inorganic components on Li<sup>+</sup> transport. The high adsorption energy of the LiPO<sub>4</sub>-enriched SEI enhances its affinity for Li<sup>+</sup> during the cycling process and suppresses solvent decomposition at the anode interface, thereby improving both fast-charging performance and electrode stability. Consequently, the Si@C@LPO anode exhibit a specific capacity of 605.67 mAh g<sup>-1</sup> at 8 A g<sup>-1</sup> and significantly enhanced cycling durability with a higher capacity retention of 73.3 % after 100 cycles at 1 A g<sup>-1</sup>. This strategy establishes a clear correlation among SEI components, Li<sup>+</sup> transport kinetics, and the design of interfacial structures in high performance LIBs anode materials.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"701 ","pages":"138710"},"PeriodicalIF":9.7000,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Li<sub>3</sub>PO<sub>4</sub>-enriched solid electrolyte interphase on Si-based anode for enhanced Li<sup>+</sup> transport and interfacial stability in lithium batteries.\",\"authors\":\"Guang Ma, Chong Xu, Sai Che, Dongyuan Zhang, Shuang Liu, Junjie Fu, Gong Cheng, Ye Wang, Yang Sun, Chao Dong, Wenyue Gao, Yongfeng Li\",\"doi\":\"10.1016/j.jcis.2025.138710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The structure and composition of the solid electrolyte interphase (SEI) exerts a significant influence on the fast-charging capability and stability of lithium-ion batteries (LIBs). However, elucidating the design principles governing anode interfacial structures and revealing the kinetics and mechanisms of Li<sup>+</sup> transport remain challenging. SEI layer. Herein, we present an efficient synthesis strategy for fabricating LIBs anodes consisting of silicon nanoparticles coated with a Li<sub>3</sub>PO<sub>4</sub>-modified carbon shell (Si@C@LPO). Through a combination of comprehensive experimental investigations and density functional theory (DFT) calculations, we elucidate the influence of SEI layer enriched with various inorganic components on Li<sup>+</sup> transport. The high adsorption energy of the LiPO<sub>4</sub>-enriched SEI enhances its affinity for Li<sup>+</sup> during the cycling process and suppresses solvent decomposition at the anode interface, thereby improving both fast-charging performance and electrode stability. Consequently, the Si@C@LPO anode exhibit a specific capacity of 605.67 mAh g<sup>-1</sup> at 8 A g<sup>-1</sup> and significantly enhanced cycling durability with a higher capacity retention of 73.3 % after 100 cycles at 1 A g<sup>-1</sup>. This strategy establishes a clear correlation among SEI components, Li<sup>+</sup> transport kinetics, and the design of interfacial structures in high performance LIBs anode materials.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"701 \",\"pages\":\"138710\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2026-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2025.138710\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.138710","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

固体电解质界面相(SEI)的结构和组成对锂离子电池的快速充电能力和稳定性有重要影响。然而,阐明控制阳极界面结构的设计原则和揭示Li+输运的动力学和机制仍然具有挑战性。SEI层。在此,我们提出了一种高效的合成策略,用于制造由涂有li3po4修饰碳壳的硅纳米颗粒组成的lib阳极(Si@C@LPO)。通过综合实验研究和密度泛函理论(DFT)计算相结合,我们阐明了富含各种无机组分的SEI层对Li+输运的影响。富含lipo4的SEI的高吸附能增强了其在循环过程中对Li+的亲和力,抑制了阳极界面的溶剂分解,从而提高了快速充电性能和电极稳定性。因此,Si@C@LPO阳极在8 a g-1下的比容量为605.67 mAh g-1,并且在1 a g-1下循环100次后,其容量保持率高达73.3%,显着提高了循环耐久性。这一策略在SEI组分、Li+输运动力学和高性能锂离子阳极材料的界面结构设计之间建立了明确的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Li3PO4-enriched solid electrolyte interphase on Si-based anode for enhanced Li+ transport and interfacial stability in lithium batteries.

The structure and composition of the solid electrolyte interphase (SEI) exerts a significant influence on the fast-charging capability and stability of lithium-ion batteries (LIBs). However, elucidating the design principles governing anode interfacial structures and revealing the kinetics and mechanisms of Li+ transport remain challenging. SEI layer. Herein, we present an efficient synthesis strategy for fabricating LIBs anodes consisting of silicon nanoparticles coated with a Li3PO4-modified carbon shell (Si@C@LPO). Through a combination of comprehensive experimental investigations and density functional theory (DFT) calculations, we elucidate the influence of SEI layer enriched with various inorganic components on Li+ transport. The high adsorption energy of the LiPO4-enriched SEI enhances its affinity for Li+ during the cycling process and suppresses solvent decomposition at the anode interface, thereby improving both fast-charging performance and electrode stability. Consequently, the Si@C@LPO anode exhibit a specific capacity of 605.67 mAh g-1 at 8 A g-1 and significantly enhanced cycling durability with a higher capacity retention of 73.3 % after 100 cycles at 1 A g-1. This strategy establishes a clear correlation among SEI components, Li+ transport kinetics, and the design of interfacial structures in high performance LIBs anode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信