Vanya Bhushan, Clinton J Bradfield, Sandhini Saha, Sung Hwan Yoon, Iain D C Fraser, Aleksandra Nita-Lazar
{"title":"尼日利亚菌素引发的炎症小体形成和焦亡的磷动力学。","authors":"Vanya Bhushan, Clinton J Bradfield, Sandhini Saha, Sung Hwan Yoon, Iain D C Fraser, Aleksandra Nita-Lazar","doi":"10.1002/pmic.70030","DOIUrl":null,"url":null,"abstract":"<p><p>Innate immune signaling relies heavily on phosphorylation cascades to mount effective immune responses. Although traditional innate immune signaling cascades following TLR4 stimulation have been investigated through a temporally quantitative phosphoproteomic lens, far fewer studies have applied these methods to distinct signaling following the inflammasome trigger leading to IL-1β release. Here, we conducted time-resolved phosphoproteomic profiling to investigate kinase signaling downstream of the inflammasome trigger nigericin. We found that nigericin induces rapid and potent alterations in the phosphorylation landscape where immune-related signaling, mitogen-activated protein kinases (MAPKs), and PKC signaling are prevalent. We also found significant evidence of phospho-modified metabolic cascades, suggesting that phosphosignaling plays a role in previously described immunometabolic regulation. These signaling events preceded robust phosphorylation of DNA damage and chromatin reorganization proteins before pyroptotic rupture. Lastly, by performing temporal clustering of phospho-dynamics, we revealed novel ontology-level shifts in phosphosignaling cascades following nigericin treatment that highlight abrupt changes in cellular behavior during early and late intracellular inflammatory events. SUMMARY: Protein phosphorylation is critical to convey innate immune signaling information to specific effector arms of the cellular immune response. This study focuses on characterizing phosphoproteomic alterations stemming from the inflammasome trigger nigericin. By gaining a deeper understanding of global kinase phosphodynamics in response to inflammasome activation, we aim to identify novel pharmacological targets to treat chronic inflammatory diseases driven by inflammasome-dependent IL-1β release.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e70030"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nigericin-Triggered Phosphodynamics in Inflammasome Formation and Pyroptosis.\",\"authors\":\"Vanya Bhushan, Clinton J Bradfield, Sandhini Saha, Sung Hwan Yoon, Iain D C Fraser, Aleksandra Nita-Lazar\",\"doi\":\"10.1002/pmic.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Innate immune signaling relies heavily on phosphorylation cascades to mount effective immune responses. Although traditional innate immune signaling cascades following TLR4 stimulation have been investigated through a temporally quantitative phosphoproteomic lens, far fewer studies have applied these methods to distinct signaling following the inflammasome trigger leading to IL-1β release. Here, we conducted time-resolved phosphoproteomic profiling to investigate kinase signaling downstream of the inflammasome trigger nigericin. We found that nigericin induces rapid and potent alterations in the phosphorylation landscape where immune-related signaling, mitogen-activated protein kinases (MAPKs), and PKC signaling are prevalent. We also found significant evidence of phospho-modified metabolic cascades, suggesting that phosphosignaling plays a role in previously described immunometabolic regulation. These signaling events preceded robust phosphorylation of DNA damage and chromatin reorganization proteins before pyroptotic rupture. Lastly, by performing temporal clustering of phospho-dynamics, we revealed novel ontology-level shifts in phosphosignaling cascades following nigericin treatment that highlight abrupt changes in cellular behavior during early and late intracellular inflammatory events. SUMMARY: Protein phosphorylation is critical to convey innate immune signaling information to specific effector arms of the cellular immune response. This study focuses on characterizing phosphoproteomic alterations stemming from the inflammasome trigger nigericin. By gaining a deeper understanding of global kinase phosphodynamics in response to inflammasome activation, we aim to identify novel pharmacological targets to treat chronic inflammatory diseases driven by inflammasome-dependent IL-1β release.</p>\",\"PeriodicalId\":224,\"journal\":{\"name\":\"Proteomics\",\"volume\":\" \",\"pages\":\"e70030\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pmic.70030\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.70030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Nigericin-Triggered Phosphodynamics in Inflammasome Formation and Pyroptosis.
Innate immune signaling relies heavily on phosphorylation cascades to mount effective immune responses. Although traditional innate immune signaling cascades following TLR4 stimulation have been investigated through a temporally quantitative phosphoproteomic lens, far fewer studies have applied these methods to distinct signaling following the inflammasome trigger leading to IL-1β release. Here, we conducted time-resolved phosphoproteomic profiling to investigate kinase signaling downstream of the inflammasome trigger nigericin. We found that nigericin induces rapid and potent alterations in the phosphorylation landscape where immune-related signaling, mitogen-activated protein kinases (MAPKs), and PKC signaling are prevalent. We also found significant evidence of phospho-modified metabolic cascades, suggesting that phosphosignaling plays a role in previously described immunometabolic regulation. These signaling events preceded robust phosphorylation of DNA damage and chromatin reorganization proteins before pyroptotic rupture. Lastly, by performing temporal clustering of phospho-dynamics, we revealed novel ontology-level shifts in phosphosignaling cascades following nigericin treatment that highlight abrupt changes in cellular behavior during early and late intracellular inflammatory events. SUMMARY: Protein phosphorylation is critical to convey innate immune signaling information to specific effector arms of the cellular immune response. This study focuses on characterizing phosphoproteomic alterations stemming from the inflammasome trigger nigericin. By gaining a deeper understanding of global kinase phosphodynamics in response to inflammasome activation, we aim to identify novel pharmacological targets to treat chronic inflammatory diseases driven by inflammasome-dependent IL-1β release.
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.