Bin Zhao, Ting Lei, Wang Xiang, Xiaojie Zhang, Libo Du*, Li Yao, Zheng Sun, Maofa Ge and Weigang Wang*,
{"title":"生物源性二次有机气溶胶对神经细胞的毒性研究。","authors":"Bin Zhao, Ting Lei, Wang Xiang, Xiaojie Zhang, Libo Du*, Li Yao, Zheng Sun, Maofa Ge and Weigang Wang*, ","doi":"10.1021/acs.chemrestox.5c00214","DOIUrl":null,"url":null,"abstract":"<p >Secondary organic aerosol (SOA) accounts for a large fraction of fine particulate matter (PM<sub>2.5</sub>) in the atmosphere. Epidemiological studies have shown that SOA has adverse effects on human health. However, the current knowledge of the SOA’s effect on the nervous system remains poorly understood. To address this issue, PC12 cells were incubated in SOA from α-pinene ozonation. The results showed that concentration-dependent increases in reactive oxygen species (ROS) levels lead to a decrease in cell viability, indicating that SOA could induce apoptosis and oxidative stress in cells. The peroxides present in the SOA are identified as major contributors to the apoptotic effect. Furthermore, the apoptosis mechanism was analyzed by Western blotting, revealing activation of the mitochondria-associated Bax/Bcl-2-Caspase-3-PARP signal pathway. In addition, the qPCR result showed that SOA had altered the expression of inflammatory factors, including IL-6, IL-1β, and TNF-α, in PC12 cells. This study investigates the molecular-level evidence of the toxicological impact of SOA on the nervous system, which further evaluates the effects of SOA on health.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"38 9","pages":"1585–1594"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicity of Biogenic Secondary Organic Aerosol toward Nerve Cells\",\"authors\":\"Bin Zhao, Ting Lei, Wang Xiang, Xiaojie Zhang, Libo Du*, Li Yao, Zheng Sun, Maofa Ge and Weigang Wang*, \",\"doi\":\"10.1021/acs.chemrestox.5c00214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Secondary organic aerosol (SOA) accounts for a large fraction of fine particulate matter (PM<sub>2.5</sub>) in the atmosphere. Epidemiological studies have shown that SOA has adverse effects on human health. However, the current knowledge of the SOA’s effect on the nervous system remains poorly understood. To address this issue, PC12 cells were incubated in SOA from α-pinene ozonation. The results showed that concentration-dependent increases in reactive oxygen species (ROS) levels lead to a decrease in cell viability, indicating that SOA could induce apoptosis and oxidative stress in cells. The peroxides present in the SOA are identified as major contributors to the apoptotic effect. Furthermore, the apoptosis mechanism was analyzed by Western blotting, revealing activation of the mitochondria-associated Bax/Bcl-2-Caspase-3-PARP signal pathway. In addition, the qPCR result showed that SOA had altered the expression of inflammatory factors, including IL-6, IL-1β, and TNF-α, in PC12 cells. This study investigates the molecular-level evidence of the toxicological impact of SOA on the nervous system, which further evaluates the effects of SOA on health.</p>\",\"PeriodicalId\":31,\"journal\":{\"name\":\"Chemical Research in Toxicology\",\"volume\":\"38 9\",\"pages\":\"1585–1594\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemrestox.5c00214\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.5c00214","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Toxicity of Biogenic Secondary Organic Aerosol toward Nerve Cells
Secondary organic aerosol (SOA) accounts for a large fraction of fine particulate matter (PM2.5) in the atmosphere. Epidemiological studies have shown that SOA has adverse effects on human health. However, the current knowledge of the SOA’s effect on the nervous system remains poorly understood. To address this issue, PC12 cells were incubated in SOA from α-pinene ozonation. The results showed that concentration-dependent increases in reactive oxygen species (ROS) levels lead to a decrease in cell viability, indicating that SOA could induce apoptosis and oxidative stress in cells. The peroxides present in the SOA are identified as major contributors to the apoptotic effect. Furthermore, the apoptosis mechanism was analyzed by Western blotting, revealing activation of the mitochondria-associated Bax/Bcl-2-Caspase-3-PARP signal pathway. In addition, the qPCR result showed that SOA had altered the expression of inflammatory factors, including IL-6, IL-1β, and TNF-α, in PC12 cells. This study investigates the molecular-level evidence of the toxicological impact of SOA on the nervous system, which further evaluates the effects of SOA on health.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.