{"title":"增强二值数据聚类的相似性度量:罕见事件和匹配缺失的作用","authors":"Tânia F. G. G. Cova, Alberto A. C. C. Pais","doi":"10.1002/cem.70061","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Clustering of binary data is central to various applications, particularly in the fields of medical diagnostics, chemistry, and chemoinformatics. However, standard similarity measures often fail to capture the informative value of rare features and matching absences, treating all attributes as equally relevant. This can lead to suboptimal clustering, especially when informative patterns are hidden in low-frequency features. This study proposes a probability-weighted approach to measuring similarity, which gives more weight to rare features and accounts for the value of shared absences based on their occurrence probabilities. We analyze how this adjustment impacts clustering results, using visual comparisons and experiments on real datasets. The results show consistent gains in clustering precision and stability compared to standard measures. Our findings suggest that incorporating the rarity of features into similarity computation can offer a more reliable basis for clustering binary data, especially in domains where rare signals carry meaningful information.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Similarity Measures for Binary Data in Clustering: The Role of Rare Events and Matching Absences\",\"authors\":\"Tânia F. G. G. Cova, Alberto A. C. C. Pais\",\"doi\":\"10.1002/cem.70061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Clustering of binary data is central to various applications, particularly in the fields of medical diagnostics, chemistry, and chemoinformatics. However, standard similarity measures often fail to capture the informative value of rare features and matching absences, treating all attributes as equally relevant. This can lead to suboptimal clustering, especially when informative patterns are hidden in low-frequency features. This study proposes a probability-weighted approach to measuring similarity, which gives more weight to rare features and accounts for the value of shared absences based on their occurrence probabilities. We analyze how this adjustment impacts clustering results, using visual comparisons and experiments on real datasets. The results show consistent gains in clustering precision and stability compared to standard measures. Our findings suggest that incorporating the rarity of features into similarity computation can offer a more reliable basis for clustering binary data, especially in domains where rare signals carry meaningful information.</p>\\n </div>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"39 9\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/cem.70061\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/cem.70061","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
Enhancing Similarity Measures for Binary Data in Clustering: The Role of Rare Events and Matching Absences
Clustering of binary data is central to various applications, particularly in the fields of medical diagnostics, chemistry, and chemoinformatics. However, standard similarity measures often fail to capture the informative value of rare features and matching absences, treating all attributes as equally relevant. This can lead to suboptimal clustering, especially when informative patterns are hidden in low-frequency features. This study proposes a probability-weighted approach to measuring similarity, which gives more weight to rare features and accounts for the value of shared absences based on their occurrence probabilities. We analyze how this adjustment impacts clustering results, using visual comparisons and experiments on real datasets. The results show consistent gains in clustering precision and stability compared to standard measures. Our findings suggest that incorporating the rarity of features into similarity computation can offer a more reliable basis for clustering binary data, especially in domains where rare signals carry meaningful information.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.