基于通用优化的多传感器全局姿态估计框架

IF 1.2 Q3 AUTOMATION & CONTROL SYSTEMS
Tong Qin, Shaozu Cao, Jie Pan, Shaojie Shen
{"title":"基于通用优化的多传感器全局姿态估计框架","authors":"Tong Qin,&nbsp;Shaozu Cao,&nbsp;Jie Pan,&nbsp;Shaojie Shen","doi":"10.1049/csy2.70023","DOIUrl":null,"url":null,"abstract":"<p>Accurate state estimation is a fundamental problem for autonomous robots. To achieve locally accurate and globally drift-free state estimation, multiple sensors with complementary properties are usually fused together. Local sensors (camera, IMU (inertial measurement unit), LiDAR, etc.) provide precise poses within a small region, whereas global sensors (GPS (global positioning system), magnetometer, barometer, etc.) supply noisy but globally drift-free localisation in a large-scale environment. In this paper, we propose a sensor fusion framework to fuse local states with global sensors, which achieves locally accurate and globally drift-free pose estimation. Local estimations, produced by existing visual odometry/visual-inertial odometry (VO/VIO) approaches, are fused with global sensors in a pose graph optimisation. Within the graph optimisation, local estimations are aligned into a global coordinate. Meanwhile, the accumulated drifts are eliminated. We evaluated the performance of our system on public datasets and with real-world experiments. The results are compared with those of other state-of-the-art algorithms. We highlight that our system is a general framework which can easily fuse various global sensors in a unified pose graph optimisation.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"7 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70023","citationCount":"0","resultStr":"{\"title\":\"A General Optimisation-Based Framework for Global Pose Estimation With Multiple Sensors\",\"authors\":\"Tong Qin,&nbsp;Shaozu Cao,&nbsp;Jie Pan,&nbsp;Shaojie Shen\",\"doi\":\"10.1049/csy2.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate state estimation is a fundamental problem for autonomous robots. To achieve locally accurate and globally drift-free state estimation, multiple sensors with complementary properties are usually fused together. Local sensors (camera, IMU (inertial measurement unit), LiDAR, etc.) provide precise poses within a small region, whereas global sensors (GPS (global positioning system), magnetometer, barometer, etc.) supply noisy but globally drift-free localisation in a large-scale environment. In this paper, we propose a sensor fusion framework to fuse local states with global sensors, which achieves locally accurate and globally drift-free pose estimation. Local estimations, produced by existing visual odometry/visual-inertial odometry (VO/VIO) approaches, are fused with global sensors in a pose graph optimisation. Within the graph optimisation, local estimations are aligned into a global coordinate. Meanwhile, the accumulated drifts are eliminated. We evaluated the performance of our system on public datasets and with real-world experiments. The results are compared with those of other state-of-the-art algorithms. We highlight that our system is a general framework which can easily fuse various global sensors in a unified pose graph optimisation.</p>\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70023\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/csy2.70023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/csy2.70023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

准确的状态估计是自主机器人的一个基本问题。为了实现局部准确和全局无漂移的状态估计,通常需要将多个特性互补的传感器融合在一起。局部传感器(相机,IMU(惯性测量单元),激光雷达等)提供小区域内的精确姿态,而全球传感器(GPS(全球定位系统),磁力计,气压计等)在大范围环境中提供嘈杂但全球无漂移的定位。在本文中,我们提出了一种传感器融合框架,将局部状态与全局传感器融合,从而实现局部精确和全局无漂移的姿态估计。由现有视觉里程计/视觉惯性里程计(VO/VIO)方法产生的局部估计与姿态图优化中的全局传感器融合在一起。在图形优化中,局部估计被对齐到全局坐标中。同时,消除了堆积的漂移。我们在公共数据集和现实世界的实验中评估了我们的系统的性能。结果与其他最先进的算法进行了比较。我们强调,我们的系统是一个通用框架,可以很容易地融合各种全局传感器在一个统一的姿态图优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A General Optimisation-Based Framework for Global Pose Estimation With Multiple Sensors

A General Optimisation-Based Framework for Global Pose Estimation With Multiple Sensors

A General Optimisation-Based Framework for Global Pose Estimation With Multiple Sensors

A General Optimisation-Based Framework for Global Pose Estimation With Multiple Sensors

A General Optimisation-Based Framework for Global Pose Estimation With Multiple Sensors

Accurate state estimation is a fundamental problem for autonomous robots. To achieve locally accurate and globally drift-free state estimation, multiple sensors with complementary properties are usually fused together. Local sensors (camera, IMU (inertial measurement unit), LiDAR, etc.) provide precise poses within a small region, whereas global sensors (GPS (global positioning system), magnetometer, barometer, etc.) supply noisy but globally drift-free localisation in a large-scale environment. In this paper, we propose a sensor fusion framework to fuse local states with global sensors, which achieves locally accurate and globally drift-free pose estimation. Local estimations, produced by existing visual odometry/visual-inertial odometry (VO/VIO) approaches, are fused with global sensors in a pose graph optimisation. Within the graph optimisation, local estimations are aligned into a global coordinate. Meanwhile, the accumulated drifts are eliminated. We evaluated the performance of our system on public datasets and with real-world experiments. The results are compared with those of other state-of-the-art algorithms. We highlight that our system is a general framework which can easily fuse various global sensors in a unified pose graph optimisation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信