{"title":"牛顿、爱因斯坦和布兰斯-迪克引力效应与地球和其他行星形状测定的比较","authors":"Sabrina Y. Fazzito, Claudio M. Simeone","doi":"10.1134/S0202289325700252","DOIUrl":null,"url":null,"abstract":"<p>A comparison between classical, relativistic and Brans–Dicke gravitational effects related to planetary shape characterization is presented. The periastron shifts for orbits around the Earth and the giant planets which can be used as tools for determinations of their shape and density distribution, are the main object of our analysis. The conditions on the parameters improving the possibility to resolve mixed effects are studied. Differing from the approach in a previous work, we now include the observational errors for the classical expansion parameters <span>\\(J_{n}\\)</span>—which are of particular relevance for the ice giants Uranus and Neptune—as well as the corrections to gravitomagnetic effects resulting from a slight inclination of the satellite orbits. Also, some non-orbital considerations are carried out for the coefficient <span>\\(J_{3}\\)</span> associated to the South-North asymmetry of the mass distribution of the other two giant planets and the Earth.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"31 3","pages":"375 - 391"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Newton, Einstein and Brans–Dicke Gravitational Effects Associated with Earth and Other Planets Shape Determination\",\"authors\":\"Sabrina Y. Fazzito, Claudio M. Simeone\",\"doi\":\"10.1134/S0202289325700252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A comparison between classical, relativistic and Brans–Dicke gravitational effects related to planetary shape characterization is presented. The periastron shifts for orbits around the Earth and the giant planets which can be used as tools for determinations of their shape and density distribution, are the main object of our analysis. The conditions on the parameters improving the possibility to resolve mixed effects are studied. Differing from the approach in a previous work, we now include the observational errors for the classical expansion parameters <span>\\\\(J_{n}\\\\)</span>—which are of particular relevance for the ice giants Uranus and Neptune—as well as the corrections to gravitomagnetic effects resulting from a slight inclination of the satellite orbits. Also, some non-orbital considerations are carried out for the coefficient <span>\\\\(J_{3}\\\\)</span> associated to the South-North asymmetry of the mass distribution of the other two giant planets and the Earth.</p>\",\"PeriodicalId\":583,\"journal\":{\"name\":\"Gravitation and Cosmology\",\"volume\":\"31 3\",\"pages\":\"375 - 391\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gravitation and Cosmology\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0202289325700252\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitation and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0202289325700252","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Comparison of Newton, Einstein and Brans–Dicke Gravitational Effects Associated with Earth and Other Planets Shape Determination
A comparison between classical, relativistic and Brans–Dicke gravitational effects related to planetary shape characterization is presented. The periastron shifts for orbits around the Earth and the giant planets which can be used as tools for determinations of their shape and density distribution, are the main object of our analysis. The conditions on the parameters improving the possibility to resolve mixed effects are studied. Differing from the approach in a previous work, we now include the observational errors for the classical expansion parameters \(J_{n}\)—which are of particular relevance for the ice giants Uranus and Neptune—as well as the corrections to gravitomagnetic effects resulting from a slight inclination of the satellite orbits. Also, some non-orbital considerations are carried out for the coefficient \(J_{3}\) associated to the South-North asymmetry of the mass distribution of the other two giant planets and the Earth.
期刊介绍:
Gravitation and Cosmology is a peer-reviewed periodical, dealing with the full range of topics of gravitational physics and relativistic cosmology and published under the auspices of the Russian Gravitation Society and Peoples’ Friendship University of Russia. The journal publishes research papers, review articles and brief communications on the following fields: theoretical (classical and quantum) gravitation; relativistic astrophysics and cosmology, exact solutions and modern mathematical methods in gravitation and cosmology, including Lie groups, geometry and topology; unification theories including gravitation; fundamental physical constants and their possible variations; fundamental gravity experiments on Earth and in space; related topics. It also publishes selected old papers which have not lost their topicality but were previously published only in Russian and were not available to the worldwide research community