{"title":"右四元数自由变形及相关的测不准原理","authors":"Khaled Hleili, Youssef El Haoui","doi":"10.1007/s13324-025-01125-y","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to investigate the right-sided quaternionic free metaplectic transformation (QFMT) and its associated uncertainty principles (UPs) for <span>\\(\\mathbb {R}^{2d}\\)</span>-dimensional quaternionic-valued signals. First, we establish the fundamental mathematical properties of the QFMT, including partial derivatives, the inversion formula, Parseval’s theorem, and the Hausdorff–Young inequality. Next, we establish various UPs within this framework, such as the Rènyi and Shannon entropy UPs and Donoho–Stark’s UP in terms of concentration. Finally, we derive <span>\\(L^a\\)</span>-bandlimited variant of the Donoho–Stark UP in the QFMT domain.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The right-sided quaternionic free metaplectic transformation and associated uncertainty principles\",\"authors\":\"Khaled Hleili, Youssef El Haoui\",\"doi\":\"10.1007/s13324-025-01125-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to investigate the right-sided quaternionic free metaplectic transformation (QFMT) and its associated uncertainty principles (UPs) for <span>\\\\(\\\\mathbb {R}^{2d}\\\\)</span>-dimensional quaternionic-valued signals. First, we establish the fundamental mathematical properties of the QFMT, including partial derivatives, the inversion formula, Parseval’s theorem, and the Hausdorff–Young inequality. Next, we establish various UPs within this framework, such as the Rènyi and Shannon entropy UPs and Donoho–Stark’s UP in terms of concentration. Finally, we derive <span>\\\\(L^a\\\\)</span>-bandlimited variant of the Donoho–Stark UP in the QFMT domain.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01125-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01125-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The right-sided quaternionic free metaplectic transformation and associated uncertainty principles
The aim of this paper is to investigate the right-sided quaternionic free metaplectic transformation (QFMT) and its associated uncertainty principles (UPs) for \(\mathbb {R}^{2d}\)-dimensional quaternionic-valued signals. First, we establish the fundamental mathematical properties of the QFMT, including partial derivatives, the inversion formula, Parseval’s theorem, and the Hausdorff–Young inequality. Next, we establish various UPs within this framework, such as the Rènyi and Shannon entropy UPs and Donoho–Stark’s UP in terms of concentration. Finally, we derive \(L^a\)-bandlimited variant of the Donoho–Stark UP in the QFMT domain.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.