高光谱异常检测的多尺度注意引导上下文网络

IF 4.4
Yuquan Gan;Xingyu Li;Siyu Wu;Mengjiao Wang
{"title":"高光谱异常检测的多尺度注意引导上下文网络","authors":"Yuquan Gan;Xingyu Li;Siyu Wu;Mengjiao Wang","doi":"10.1109/LGRS.2025.3601600","DOIUrl":null,"url":null,"abstract":"Hyperspectral anomaly detection (HAD) aims to identify anomalous targets that differ from the background in high-dimensional spectral images, and is widely applied in fields such as military reconnaissance and environmental monitoring. However, the diversity of anomaly scales, interference from complex backgrounds, and redundancy of spectral information pose significant challenges to achieving high detection accuracy. To address these issues, this letter proposes a multiscale attention-guided context network (MACNet) to enhance the perception of anomalous regions. MACNet consists of three components: a multiscale local feature extractor (MSLFE) that effectively captures edge structures and subtle anomalies at different scales, a global context awareness module (GCAM) that fuses local and global contextual information to improve discrimination under complex backgrounds, and a refined reconstruction and contrast enhancement module (RRCE) that employs channel attention and spatial reconstruction mechanisms to enhance the response differences between anomalies and background. Experiments on four publicly available hyperspectral datasets demonstrate that MACNet achieves superior detection accuracy compared to existing mainstream methods, validating the effectiveness of the proposed approach.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MACNet: A Multiscale Attention-Guided Contextual Network for Hyperspectral Anomaly Detection\",\"authors\":\"Yuquan Gan;Xingyu Li;Siyu Wu;Mengjiao Wang\",\"doi\":\"10.1109/LGRS.2025.3601600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral anomaly detection (HAD) aims to identify anomalous targets that differ from the background in high-dimensional spectral images, and is widely applied in fields such as military reconnaissance and environmental monitoring. However, the diversity of anomaly scales, interference from complex backgrounds, and redundancy of spectral information pose significant challenges to achieving high detection accuracy. To address these issues, this letter proposes a multiscale attention-guided context network (MACNet) to enhance the perception of anomalous regions. MACNet consists of three components: a multiscale local feature extractor (MSLFE) that effectively captures edge structures and subtle anomalies at different scales, a global context awareness module (GCAM) that fuses local and global contextual information to improve discrimination under complex backgrounds, and a refined reconstruction and contrast enhancement module (RRCE) that employs channel attention and spatial reconstruction mechanisms to enhance the response differences between anomalies and background. Experiments on four publicly available hyperspectral datasets demonstrate that MACNet achieves superior detection accuracy compared to existing mainstream methods, validating the effectiveness of the proposed approach.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11134410/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11134410/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱异常检测(HAD)旨在识别高维光谱图像中与背景不同的异常目标,广泛应用于军事侦察和环境监测等领域。然而,异常尺度的多样性、复杂背景的干扰以及光谱信息的冗余,对实现高检测精度提出了重大挑战。为了解决这些问题,这封信提出了一个多尺度注意力引导上下文网络(MACNet)来增强对异常区域的感知。MACNet由三个部分组成:有效捕获不同尺度边缘结构和细微异常的多尺度局部特征提取器(MSLFE),融合局部和全局上下文信息以提高复杂背景下识别能力的全局上下文感知模块(GCAM),以及利用通道注意和空间重建机制增强异常和背景响应差异的精细重建和对比度增强模块(RRCE)。在4个公开可用的高光谱数据集上进行的实验表明,与现有主流方法相比,MACNet的检测精度更高,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MACNet: A Multiscale Attention-Guided Contextual Network for Hyperspectral Anomaly Detection
Hyperspectral anomaly detection (HAD) aims to identify anomalous targets that differ from the background in high-dimensional spectral images, and is widely applied in fields such as military reconnaissance and environmental monitoring. However, the diversity of anomaly scales, interference from complex backgrounds, and redundancy of spectral information pose significant challenges to achieving high detection accuracy. To address these issues, this letter proposes a multiscale attention-guided context network (MACNet) to enhance the perception of anomalous regions. MACNet consists of three components: a multiscale local feature extractor (MSLFE) that effectively captures edge structures and subtle anomalies at different scales, a global context awareness module (GCAM) that fuses local and global contextual information to improve discrimination under complex backgrounds, and a refined reconstruction and contrast enhancement module (RRCE) that employs channel attention and spatial reconstruction mechanisms to enhance the response differences between anomalies and background. Experiments on four publicly available hyperspectral datasets demonstrate that MACNet achieves superior detection accuracy compared to existing mainstream methods, validating the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信