具有三重函数的平衡问题及其在半变不等式中的应用

IF 1.6 3区 数学 Q1 MATHEMATICS
Sultana Ben Aadi, Khalid Akhlil, Daniela Inoan
{"title":"具有三重函数的平衡问题及其在半变不等式中的应用","authors":"Sultana Ben Aadi,&nbsp;Khalid Akhlil,&nbsp;Daniela Inoan","doi":"10.1007/s13324-025-01123-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we define generalized monotonicity concepts related to equilibrium problems generated by trifunctions. We then study the existence of solutions to mixed equilibrium problems described as the sum of a maximal monotone trifunction and a pseudomonotone trifunction in Brézis sense. The main tools for this study are a Thikonov regularization procedure with respect to the generalized duality mapping and recession analysis adapted to trifunctions. An application consists in an existence result for a noncoercive hemivariational inequality.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equilibrium problems with trifunctions and applications to hemivariational inequalities\",\"authors\":\"Sultana Ben Aadi,&nbsp;Khalid Akhlil,&nbsp;Daniela Inoan\",\"doi\":\"10.1007/s13324-025-01123-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we define generalized monotonicity concepts related to equilibrium problems generated by trifunctions. We then study the existence of solutions to mixed equilibrium problems described as the sum of a maximal monotone trifunction and a pseudomonotone trifunction in Brézis sense. The main tools for this study are a Thikonov regularization procedure with respect to the generalized duality mapping and recession analysis adapted to trifunctions. An application consists in an existence result for a noncoercive hemivariational inequality.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01123-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01123-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文定义了与三重函数生成的平衡问题有关的广义单调性概念。在此基础上,研究了一类brsamzis意义上的极大单调三函数和伪单调三函数的混合平衡问题解的存在性。本研究的主要工具是关于广义对偶映射的Thikonov正则化过程和适用于三重函数的衰退分析。一个应用包含在一个非强制半变不等式的存在性结果中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equilibrium problems with trifunctions and applications to hemivariational inequalities

In this paper, we define generalized monotonicity concepts related to equilibrium problems generated by trifunctions. We then study the existence of solutions to mixed equilibrium problems described as the sum of a maximal monotone trifunction and a pseudomonotone trifunction in Brézis sense. The main tools for this study are a Thikonov regularization procedure with respect to the generalized duality mapping and recession analysis adapted to trifunctions. An application consists in an existence result for a noncoercive hemivariational inequality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信