{"title":"基于交错升压变换器的PVS混合MPPT算法设计与验证","authors":"Luis Enrique Hernandez Aguilar;Gerardo Vazquez Guzman;Panfilo Raymundo Martinez Rodriguez;Dalyndha Aztatzi Pluma","doi":"10.1109/TLA.2025.11150626","DOIUrl":null,"url":null,"abstract":"Photovoltaic systems must be highly efficient to transfer the electric power generated to the local loads or to the electrical grid. In partial-shading conditions there are multiple local maximum power points which are not evaluated by conventional MPPT methods producing low efficiency in the photovoltaic system. In this paper a hybrid Particle Swarm Optimization (PSO) based method is proposed. The proposed method allows to locate the global maximum power point enhancing the availability of the generated electrical power and reducing the convergence time compared to the conventional PSO algorithm. The proposed method is compared with classical MPPT algorithms like Hill Climbing (HC), perturb and observe (P and O), incremental conductance (IncCond) and the conventional particle swarm optimization (PSO) method. The comparison is performed by means of numerical simulations and implementing an experimental platform with real photovoltaic panels.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":"23 10","pages":"901-909"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11150626","citationCount":"0","resultStr":"{\"title\":\"Design and validation of a hybrid MPPT algorithm for PVS using an interleaved boost converter\",\"authors\":\"Luis Enrique Hernandez Aguilar;Gerardo Vazquez Guzman;Panfilo Raymundo Martinez Rodriguez;Dalyndha Aztatzi Pluma\",\"doi\":\"10.1109/TLA.2025.11150626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic systems must be highly efficient to transfer the electric power generated to the local loads or to the electrical grid. In partial-shading conditions there are multiple local maximum power points which are not evaluated by conventional MPPT methods producing low efficiency in the photovoltaic system. In this paper a hybrid Particle Swarm Optimization (PSO) based method is proposed. The proposed method allows to locate the global maximum power point enhancing the availability of the generated electrical power and reducing the convergence time compared to the conventional PSO algorithm. The proposed method is compared with classical MPPT algorithms like Hill Climbing (HC), perturb and observe (P and O), incremental conductance (IncCond) and the conventional particle swarm optimization (PSO) method. The comparison is performed by means of numerical simulations and implementing an experimental platform with real photovoltaic panels.\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":\"23 10\",\"pages\":\"901-909\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11150626\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11150626/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11150626/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Design and validation of a hybrid MPPT algorithm for PVS using an interleaved boost converter
Photovoltaic systems must be highly efficient to transfer the electric power generated to the local loads or to the electrical grid. In partial-shading conditions there are multiple local maximum power points which are not evaluated by conventional MPPT methods producing low efficiency in the photovoltaic system. In this paper a hybrid Particle Swarm Optimization (PSO) based method is proposed. The proposed method allows to locate the global maximum power point enhancing the availability of the generated electrical power and reducing the convergence time compared to the conventional PSO algorithm. The proposed method is compared with classical MPPT algorithms like Hill Climbing (HC), perturb and observe (P and O), incremental conductance (IncCond) and the conventional particle swarm optimization (PSO) method. The comparison is performed by means of numerical simulations and implementing an experimental platform with real photovoltaic panels.
期刊介绍:
IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.