基于交叉变形的延迟多普勒地图特征点海面高度预测方法

IF 4.4
Jin Xing;Feng Wang;Dongkai Yang;Chuanrui Tan;Xiangchao Ma;Wenqian Chen;Guangmiao Ji
{"title":"基于交叉变形的延迟多普勒地图特征点海面高度预测方法","authors":"Jin Xing;Feng Wang;Dongkai Yang;Chuanrui Tan;Xiangchao Ma;Wenqian Chen;Guangmiao Ji","doi":"10.1109/LGRS.2025.3601112","DOIUrl":null,"url":null,"abstract":"Global navigation satellite system-reflectometry (GNSS-R) provides an effective remote sensing technique for accurate retrieval of sea surface height (SSH) measurements. However, accuracy is severely affected by environmental disturbances such as wind-induced sea clutter and wave interference, degrading delay–Doppler map (DDM)-derived measurements. In this study, we propose an advanced trajectory-based deep learning model, Crossformer, explicitly designed to capture temporal dependencies inherent in GNSS-R sequential data. The method leverages five distinct DDM features: peak power point (PPP), maximum slope point (MSP), center pixel intensity (CPI), average power point (APP), and kurtosis (KUR). A dimension-segmentwise (DSW) embedding technique combined with a two-stage attention (TSA) mechanism effectively models both temporal and cross-dimensional correlations. Evaluation using CYGNSS data validated against Jason-3 Level 2 measurements demonstrates the superior performance of our approach, yielding a root mean square error (RMSE) of 0.93 m, mean absolute error (MAE) of 0.65 m, and a coefficient of determination (<inline-formula> <tex-math>$R^{2}$ </tex-math></inline-formula>) of 0.9901. Comparative analyses with baseline methods confirm significant improvements in robustness and predictive accuracy, particularly across varying sea states. This research underscores the potential of advanced temporal modeling techniques in GNSS-R altimetry applications.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Crossformer-Based Method for Sea Surface Height Prediction Using Delay–Doppler Map Feature Points\",\"authors\":\"Jin Xing;Feng Wang;Dongkai Yang;Chuanrui Tan;Xiangchao Ma;Wenqian Chen;Guangmiao Ji\",\"doi\":\"10.1109/LGRS.2025.3601112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global navigation satellite system-reflectometry (GNSS-R) provides an effective remote sensing technique for accurate retrieval of sea surface height (SSH) measurements. However, accuracy is severely affected by environmental disturbances such as wind-induced sea clutter and wave interference, degrading delay–Doppler map (DDM)-derived measurements. In this study, we propose an advanced trajectory-based deep learning model, Crossformer, explicitly designed to capture temporal dependencies inherent in GNSS-R sequential data. The method leverages five distinct DDM features: peak power point (PPP), maximum slope point (MSP), center pixel intensity (CPI), average power point (APP), and kurtosis (KUR). A dimension-segmentwise (DSW) embedding technique combined with a two-stage attention (TSA) mechanism effectively models both temporal and cross-dimensional correlations. Evaluation using CYGNSS data validated against Jason-3 Level 2 measurements demonstrates the superior performance of our approach, yielding a root mean square error (RMSE) of 0.93 m, mean absolute error (MAE) of 0.65 m, and a coefficient of determination (<inline-formula> <tex-math>$R^{2}$ </tex-math></inline-formula>) of 0.9901. Comparative analyses with baseline methods confirm significant improvements in robustness and predictive accuracy, particularly across varying sea states. This research underscores the potential of advanced temporal modeling techniques in GNSS-R altimetry applications.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11133602/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11133602/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球导航卫星系统反射测量(GNSS-R)为精确检索海面高度(SSH)测量值提供了一种有效的遥感技术。然而,由于环境干扰(如风致海杂波和波浪干扰),延迟多普勒图(DDM)衍生的测量结果会受到精度的严重影响。在这项研究中,我们提出了一种先进的基于轨迹的深度学习模型,Crossformer,明确设计用于捕获GNSS-R序列数据中固有的时间依赖性。该方法利用了五个不同的DDM特征:峰值功率点(PPP)、最大斜率点(MSP)、中心像素强度(CPI)、平均功率点(APP)和峰度(KUR)。结合两阶段注意(TSA)机制的维度分段嵌入技术有效地模拟了时间和跨维度相关性。使用CYGNSS数据对Jason-3 Level 2测量结果进行验证的评估表明,我们的方法具有优越的性能,产生的均方根误差(RMSE)为0.93 m,平均绝对误差(MAE)为0.65 m,决定系数($R^{2}$)为0.9901。与基线方法的对比分析证实了鲁棒性和预测准确性的显著提高,特别是在不同的海况下。这项研究强调了先进的时间建模技术在GNSS-R测高应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Crossformer-Based Method for Sea Surface Height Prediction Using Delay–Doppler Map Feature Points
Global navigation satellite system-reflectometry (GNSS-R) provides an effective remote sensing technique for accurate retrieval of sea surface height (SSH) measurements. However, accuracy is severely affected by environmental disturbances such as wind-induced sea clutter and wave interference, degrading delay–Doppler map (DDM)-derived measurements. In this study, we propose an advanced trajectory-based deep learning model, Crossformer, explicitly designed to capture temporal dependencies inherent in GNSS-R sequential data. The method leverages five distinct DDM features: peak power point (PPP), maximum slope point (MSP), center pixel intensity (CPI), average power point (APP), and kurtosis (KUR). A dimension-segmentwise (DSW) embedding technique combined with a two-stage attention (TSA) mechanism effectively models both temporal and cross-dimensional correlations. Evaluation using CYGNSS data validated against Jason-3 Level 2 measurements demonstrates the superior performance of our approach, yielding a root mean square error (RMSE) of 0.93 m, mean absolute error (MAE) of 0.65 m, and a coefficient of determination ( $R^{2}$ ) of 0.9901. Comparative analyses with baseline methods confirm significant improvements in robustness and predictive accuracy, particularly across varying sea states. This research underscores the potential of advanced temporal modeling techniques in GNSS-R altimetry applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信