{"title":"高斯过程回归的拜占庭弹性联邦在线学习","authors":"Xu Zhang , Zhenyuan Yuan , Minghui Zhu","doi":"10.1016/j.automatica.2025.112554","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study Byzantine-resilient federated online learning for Gaussian process regression (GPR). We develop a Byzantine-resilient federated GPR algorithm that allows a cloud and a group of agents to collaboratively learn a latent function and improve the learning performances where some agents exhibit Byzantine failures, i.e., arbitrary and potentially adversarial behavior. Each agent-based local GPR sends potentially compromised local predictions to the cloud, and the cloud-based aggregated GPR computes a global model by a Byzantine-resilient product of experts aggregation rule. Then the cloud broadcasts the current global model to all the agents. Agent-based fused GPR refines local predictions by fusing the received global model with that of the agent-based local GPR. Moreover, we quantify the learning accuracy improvements of the agent-based fused GPR over the agent-based local GPR. Experiments on a toy example and two medium-scale real-world datasets are conducted to demonstrate the performances of the proposed algorithm.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"183 ","pages":"Article 112554"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Byzantine-resilient federated online learning for Gaussian process regression\",\"authors\":\"Xu Zhang , Zhenyuan Yuan , Minghui Zhu\",\"doi\":\"10.1016/j.automatica.2025.112554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study Byzantine-resilient federated online learning for Gaussian process regression (GPR). We develop a Byzantine-resilient federated GPR algorithm that allows a cloud and a group of agents to collaboratively learn a latent function and improve the learning performances where some agents exhibit Byzantine failures, i.e., arbitrary and potentially adversarial behavior. Each agent-based local GPR sends potentially compromised local predictions to the cloud, and the cloud-based aggregated GPR computes a global model by a Byzantine-resilient product of experts aggregation rule. Then the cloud broadcasts the current global model to all the agents. Agent-based fused GPR refines local predictions by fusing the received global model with that of the agent-based local GPR. Moreover, we quantify the learning accuracy improvements of the agent-based fused GPR over the agent-based local GPR. Experiments on a toy example and two medium-scale real-world datasets are conducted to demonstrate the performances of the proposed algorithm.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"183 \",\"pages\":\"Article 112554\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825004492\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825004492","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Byzantine-resilient federated online learning for Gaussian process regression
In this paper, we study Byzantine-resilient federated online learning for Gaussian process regression (GPR). We develop a Byzantine-resilient federated GPR algorithm that allows a cloud and a group of agents to collaboratively learn a latent function and improve the learning performances where some agents exhibit Byzantine failures, i.e., arbitrary and potentially adversarial behavior. Each agent-based local GPR sends potentially compromised local predictions to the cloud, and the cloud-based aggregated GPR computes a global model by a Byzantine-resilient product of experts aggregation rule. Then the cloud broadcasts the current global model to all the agents. Agent-based fused GPR refines local predictions by fusing the received global model with that of the agent-based local GPR. Moreover, we quantify the learning accuracy improvements of the agent-based fused GPR over the agent-based local GPR. Experiments on a toy example and two medium-scale real-world datasets are conducted to demonstrate the performances of the proposed algorithm.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.