基于交互式编码器和差分分层变压器的混合网络用于多相乳腺癌分割

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yuexin Wang , Gesheng Song , Jian Zhang , Fangqing Wang , Haixing Cheng , Yudan Zhao , Peng Zhou , Xu Qiao , Wei Chen
{"title":"基于交互式编码器和差分分层变压器的混合网络用于多相乳腺癌分割","authors":"Yuexin Wang ,&nbsp;Gesheng Song ,&nbsp;Jian Zhang ,&nbsp;Fangqing Wang ,&nbsp;Haixing Cheng ,&nbsp;Yudan Zhao ,&nbsp;Peng Zhou ,&nbsp;Xu Qiao ,&nbsp;Wei Chen","doi":"10.1016/j.displa.2025.103193","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer, a prevalent malignancy and leading cause of global mortality in women, requires precise tumor assessment. Although multi-phase dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) offers high sensitivity for tumor evaluation and treatment monitoring, precise primary tumor segmentation remains challenging, limiting advancements in personalized medicine. Existing segmentation methods struggle with multi-sequence DCE-MRI. Consequently, we propose IEDHTrans, a novel hybrid network leveraging multi-phase DCE-MRI information to enhance breast tumor segmentation. This network comprises an interactive encoders module for accurate multi-phase feature extraction of breast tumor features, a differential hierarchical transformer module to establish global long-distance dependencies on multi-resolution feature graphs, and a convolutional neural network decoders module for feature upsampling. Our method’s effectiveness is validated through quantitative and qualitative experiments on the public MAMA-MIA dataset, the PLHN dataset, and our in-house clinical dataset. This approach consistently outperforms other advanced methods. We achieved dice coefficients of 81.22%, 77.85% and 81.83% on the MAMA-MIA, PLHN dataset and in-house clinical datasets, respectively. The source code and in-house clinical dataset are accessible at <span><span>https://github.com/WYX-gh/IEDHTrans</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103193"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IEDHTrans: A hybrid network with interactive encoders and differential hierarchical transformers for multi-phase breast cancer segmentation\",\"authors\":\"Yuexin Wang ,&nbsp;Gesheng Song ,&nbsp;Jian Zhang ,&nbsp;Fangqing Wang ,&nbsp;Haixing Cheng ,&nbsp;Yudan Zhao ,&nbsp;Peng Zhou ,&nbsp;Xu Qiao ,&nbsp;Wei Chen\",\"doi\":\"10.1016/j.displa.2025.103193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Breast cancer, a prevalent malignancy and leading cause of global mortality in women, requires precise tumor assessment. Although multi-phase dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) offers high sensitivity for tumor evaluation and treatment monitoring, precise primary tumor segmentation remains challenging, limiting advancements in personalized medicine. Existing segmentation methods struggle with multi-sequence DCE-MRI. Consequently, we propose IEDHTrans, a novel hybrid network leveraging multi-phase DCE-MRI information to enhance breast tumor segmentation. This network comprises an interactive encoders module for accurate multi-phase feature extraction of breast tumor features, a differential hierarchical transformer module to establish global long-distance dependencies on multi-resolution feature graphs, and a convolutional neural network decoders module for feature upsampling. Our method’s effectiveness is validated through quantitative and qualitative experiments on the public MAMA-MIA dataset, the PLHN dataset, and our in-house clinical dataset. This approach consistently outperforms other advanced methods. We achieved dice coefficients of 81.22%, 77.85% and 81.83% on the MAMA-MIA, PLHN dataset and in-house clinical datasets, respectively. The source code and in-house clinical dataset are accessible at <span><span>https://github.com/WYX-gh/IEDHTrans</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"91 \",\"pages\":\"Article 103193\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938225002306\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225002306","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是一种普遍的恶性肿瘤,也是全球妇女死亡的主要原因,需要对其进行精确的肿瘤评估。尽管多相动态对比增强磁共振成像(DCE-MRI)为肿瘤评估和治疗监测提供了高灵敏度,但精确的原发肿瘤分割仍然具有挑战性,限制了个性化医疗的进步。现有的分割方法难以与多序列DCE-MRI相匹配。因此,我们提出了IEDHTrans,这是一种利用多期DCE-MRI信息来增强乳腺肿瘤分割的新型混合网络。该网络包括一个交互式编码器模块,用于准确提取乳腺肿瘤特征的多相特征,一个差分分层变压器模块,用于建立多分辨率特征图的全局远程依赖关系,以及一个卷积神经网络解码器模块,用于特征上采样。我们的方法的有效性通过在公共MAMA-MIA数据集,PLHN数据集和我们内部临床数据集上的定量和定性实验得到验证。这种方法始终优于其他高级方法。我们在MAMA-MIA、PLHN数据集和内部临床数据集上分别获得了81.22%、77.85%和81.83%的骰子系数。源代码和内部临床数据集可访问https://github.com/WYX-gh/IEDHTrans。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IEDHTrans: A hybrid network with interactive encoders and differential hierarchical transformers for multi-phase breast cancer segmentation
Breast cancer, a prevalent malignancy and leading cause of global mortality in women, requires precise tumor assessment. Although multi-phase dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) offers high sensitivity for tumor evaluation and treatment monitoring, precise primary tumor segmentation remains challenging, limiting advancements in personalized medicine. Existing segmentation methods struggle with multi-sequence DCE-MRI. Consequently, we propose IEDHTrans, a novel hybrid network leveraging multi-phase DCE-MRI information to enhance breast tumor segmentation. This network comprises an interactive encoders module for accurate multi-phase feature extraction of breast tumor features, a differential hierarchical transformer module to establish global long-distance dependencies on multi-resolution feature graphs, and a convolutional neural network decoders module for feature upsampling. Our method’s effectiveness is validated through quantitative and qualitative experiments on the public MAMA-MIA dataset, the PLHN dataset, and our in-house clinical dataset. This approach consistently outperforms other advanced methods. We achieved dice coefficients of 81.22%, 77.85% and 81.83% on the MAMA-MIA, PLHN dataset and in-house clinical datasets, respectively. The source code and in-house clinical dataset are accessible at https://github.com/WYX-gh/IEDHTrans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信